www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Kritische Punkte Minima Maxima
Kritische Punkte Minima Maxima < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kritische Punkte Minima Maxima: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 06:54 Fr 22.11.2019
Autor: bondi

Aufgabe
$ [mm] f(x,y)=(x^2+y^2) e^{-x} [/mm] $

a) Untersuche f auf lokale Extrema
b) Besitzt f ein lokales Minimum, ein globales Maximum


Hallo,
ich stell kurz die wichtigen Passagen der Aufgabe ein. Eigentlich geht's mir darum einen Weg zu finden, beim Ableiten keine Fehler zu machen. Vor allem, wenn bspw. $ [mm] \bruch{\delta f}{\delta y} [/mm] = [mm] 2ye^{-x} [/mm] $ nach $ x $ bzw. $ y $ abgeleitet wird. Hier komm ich immer wieder mit der Konstanten durcheinander.

a) $ (grad f)(x,y)= 0 $

$ [mm] \bruch{\delta f}{\delta x} [/mm] = [mm] 2xe^{-x} [/mm] + [mm] (x^2+y^2)(-e^{-x}) [/mm] = [mm] e^{-x}(2x-x^2-y^2) [/mm] $

$ [mm] \bruch{\delta f}{\delta y} [/mm] = [mm] 2ye^{-x} [/mm] $

$ (grad f)(x,y) = 0 [mm] \Leftrightarrow \begin{cases} 0=e^{-x}(2x-x^2-y^2), & \mbox{} \mbox{} \\ 0=2ye^{-x}, & \mbox{ } \mbox{} \end{cases} [/mm] $

Da $ [mm] e^z \neq [/mm] 0 $,  folgt hieraus:



$ [mm] \begin{cases} 0=(2x-x^2-y^2), & \mbox{} \mbox{} \\ 0=2y, & \mbox{ } \mbox{} \end{cases} [/mm] $

Kritische Punkte in f sind: (0,0) und (2,0).


b)

Zum Bestimmen der Extrema Hesse-Matrix:

$ [mm] H_f(x,y) [/mm] = [mm] \pmat{ -e^{-x}(2x-x^2-y^2)+e^{-x}(2-2x) & -2ye^{-x} \\ -2ye^{-x} & 2e^{-x} } [/mm]  $

Somit:

$ [mm] H_f(x,y) [/mm] = [mm] \pmat{ \bruch{\delta^2f}{\delta x^2} & \bruch{\delta^2f}{\delta y \delta x} \\ \bruch{\delta^2f}{\delta x \delta y} & \bruch{\delta^2 f}{\delta y^2} } [/mm]  $


$ [mm] H_f(0,0)= \pmat{ 2 & 0 \\ 0 & 2 } [/mm]  $

D positiv, 1. Hauptminor positiv, daraus folgt lok. Minimum.

Für (2,0) zeig ich jetzt nicht, weil's nach gleichem Vorgehen läuft.

Zu meinem Problem: Ich komme öfter beim Ableiten durcheinander, bspw. hab ich zu Beginn beim Ableiten von
$  [mm] 2ye^{-x} [/mm] $ nach $ x $ mit $ u'v + uv' $ gerechnet. Dabei ist $ 2y $ beim Ableiten nach $ x $ Konstante.

Eselsbrücke are very welcome.


        
Bezug
Kritische Punkte Minima Maxima: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Fr 22.11.2019
Autor: fred97


> [mm]f(x,y)=(x^2+y^2) e^{-x}[/mm]
>  
> a) Untersuche f auf lokale Extrema
>  b) Besitzt f ein lokales Minimum, ein globales Maximum
>  
> Hallo,
>  ich stell kurz die wichtigen Passagen der Aufgabe ein.
> Eigentlich geht's mir darum einen Weg zu finden, beim
> Ableiten keine Fehler zu machen. Vor allem, wenn bspw.
> [mm]\bruch{\delta f}{\delta y} = 2ye^{-x}[/mm] nach [mm]x[/mm] bzw. [mm]y[/mm]
> abgeleitet wird. Hier komm ich immer wieder mit der
> Konstanten durcheinander.
>  
> a) [mm](grad f)(x,y)= 0[/mm]
>  
> [mm]\bruch{\delta f}{\delta x} = 2xe^{-x} + (x^2+y^2)(-e^{-x}) = e^{-x}(2x-x^2-y^2)[/mm]
>  
> [mm]\bruch{\delta f}{\delta y} = 2ye^{-x}[/mm]
>  
> [mm](grad f)(x,y) = 0 \Leftrightarrow \begin{cases} 0=e^{-x}(2x-x^2-y^2), & \mbox{} \mbox{} \\ 0=2ye^{-x}, & \mbox{ } \mbox{} \end{cases}[/mm]
>  
> Da [mm]e^z \neq 0 [/mm],  folgt hieraus:
>  
>
>
> [mm]\begin{cases} 0=(2x-x^2-y^2), & \mbox{} \mbox{} \\ 0=2y, & \mbox{ } \mbox{} \end{cases}[/mm]
>  
> Kritische Punkte in f sind: (0,0) und (2,0).


Bis hier ist alles bestens. Nur das [mm] \delta [/mm] stört, das ist nicht die übliche Schreibweise. Schreibe statt [mm] \delta [/mm] das: [mm] \partial. [/mm]


>  
>
> b)
>  
> Zum Bestimmen der Extrema Hesse-Matrix:
>  
> [mm]H_f(x,y) = \pmat{ -e^{-x}(2x-x^2-y^2)+e^{-x}(2-2x) & -2ye^{-x} \\ -2ye^{-x} & 2e^{-x} } [/mm]
>  
> Somit:
>  
> [mm]H_f(x,y) = \pmat{ \bruch{\delta^2f}{\delta x^2} & \bruch{\delta^2f}{\delta y \delta x} \\ \bruch{\delta^2f}{\delta x \delta y} & \bruch{\delta^2 f}{\delta y^2} } [/mm]


Auch das stimmt. (Bis auf [mm] \delta) [/mm]

>  
>
> [mm]H_f(0,0)= \pmat{ 2 & 0 \\ 0 & 2 } [/mm]
>  
> D positiv, 1. Hauptminor positiv, daraus folgt lok.
> Minimum.

Das hättest Du einfacher haben können: es ist $f(x,y) [mm] \ge [/mm] 0$ für all $(x,y) [mm] \in \IR^2$ [/mm] und $f(0,0) =0.$ Damit hat f in (0,0) sogar ein globales Minimum !


>  
> Für (2,0) zeig ich jetzt nicht, weil's nach gleichem
> Vorgehen läuft.
>  
> Zu meinem Problem: Ich komme öfter beim Ableiten
> durcheinander, bspw. hab ich zu Beginn beim Ableiten von
>  [mm]2ye^{-x}[/mm] nach [mm]x[/mm] mit [mm]u'v + uv'[/mm] gerechnet. Dabei ist [mm]2y[/mm] beim
> Ableiten nach [mm]x[/mm] Konstante.

Ja, so ist es.

>  
> Eselsbrücke are very welcome.

Oh, yeah, lets talk denglish.  In order to differentiate  [mm]2ye^{-x}[/mm] with respect to x with the product rule, is like shooting with canons auf spatzen.

A donkey bridge: $ [mm] \frac{ \partial}{\partial x} 5e^{-x}=-5e^{-x}, \frac{ \partial}{\partial x} 9e^{-x}=-9e^{-x}, \frac{ \partial}{\partial x} ye^{-x}=-ye^{-x}, [/mm] .......$

Kommst Du now clear ?




>  


Bezug
                
Bezug
Kritische Punkte Minima Maxima: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Fr 22.11.2019
Autor: Gonozal_IX

Hi fred,

> Oh, yeah, lets talk denglish.  In order to differentiate  
> [mm]2ye^{-x}[/mm] with respect to x with the product rule, is like
> shooting with canons auf spatzen.
>  
> A donkey bridge: [mm]\frac{ \partial}{\partial x} 5e^{-x}=-5e^{-x}, \frac{ \partial}{\partial x} 9e^{-x}=-9e^{-x}, \frac{ \partial}{\partial x} ye^{-x}=-ye^{-x}, .......[/mm]
>  
> Kommst Du now clear ?

Danke für den Lacher am Morgen.

Gruß,
Gono

Bezug
                
Bezug
Kritische Punkte Minima Maxima: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Sa 23.11.2019
Autor: bondi

Oh jess, I am clear now.

I thank you very.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]