www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Kriterium für die Meßbarkeit
Kriterium für die Meßbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kriterium für die Meßbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 16.05.2006
Autor: mstudent

Aufgabe
Seien $(X, [mm] \mathcal{A})$ [/mm] und [mm] $(Y,\mathcal{B})$ [/mm] meßbare Räume. [mm] $\mathcal{E}$ [/mm] erzeuge die [mm] $\sigma$-Algebra $\mathcal{B}$ [/mm] und es sei $T:X [mm] \to [/mm] Y$ eine Abbildung mit [mm] $T^{-1} [/mm] (B) [mm] \in \mathcal{A}$ [/mm] für $B [mm] \in \mathcal{E}$. [/mm] Dann ist $T$  [mm] $\mathcal{A}-\mathcal{B}$-meßbar. [/mm]

Hallo zusammen!

Ich weiß nicht so genau wie ich da vorgehen soll...

Hab mir folgendes überlegt:

Also nach Voraussetzung gilt [mm] $\{ T^{-1} (B): B \in E \} \subset [/mm] A$ , daraus folgt, dass [mm] $\sigma (\{T^{-1} (B): B \in E\}) \subset\ [/mm] A$ (weil A eine [mm] \sigma [/mm] - Algebra ist).
Nach Voraussetzung gilt auch: $B = [mm] \sigma [/mm] (E)$.
Folgt denn daraus die Behauptung??

Wäre nett wenn mir jemand helfen würde!
vielen Dank im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kriterium für die Meßbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 Fr 19.05.2006
Autor: mathiash

Hallo und guten Morgen,

wenn  [mm] {\mathcal E} [/mm] die [mm] \varsigma-Algebra {\mathcal B} [/mm] erzeugt und [mm] \forall E\in {\mathcal E} \:\: T^{-1}(E)\in {\mathcal A} [/mm] gilt,
ist daraus abzuleiten, dass [mm] \forall B\in {\mathcal B} [/mm] auch [mm] T^{-1}(B)\in {\mathcal A} [/mm] gilt. Das hast Du ja auch so geschrieben/angedeutet.

Aber gerade dies würd ich dann auch explizit machen: Da musst Du im wesentlichen begründen, daß [mm] T^{-1} [/mm] mit den Mengenoperationen,
mit denen die [mm] \varsigma-Algebra {\mathcal B} [/mm] aus [mm] {\mathcal E} [/mm] erzeugt wird, zB:

Falls  [mm] T^{-1}(E_i)\in {\mathcal A},\:\: i\in [/mm] I, so gilt auch [mm] T^{-1}(\bigcup_{i\in I} E_i)\in {\mathcal A}. [/mm]

Klar soweit ?

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]