www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Kreiskegel in Kugel
Kreiskegel in Kugel < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreiskegel in Kugel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:20 Fr 20.06.2008
Autor: Sandy1

Aufgabe
Einer Kugel ist ein gerader Kreiskegel einbeschrieben (Radius r und Höhe h). R = Radius Kugel

Wie groß ist der Winkel x damit das Kegelvolumen maximal wird. (x ist der Winkel zwischen h und einer Seitenlinie des Kegels)? Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Ich hoffe das mir hier jemand weiterhelfen kann, da ich nicht weiß ob mein Ansatz stimmt und wenn ja wie es weiter geht...

Es ist klar, dass es um das Volumen des Kegels geht, also:

V = [mm] 1/3*r^2*pi*h [/mm]

nicht mehr sicher bin ich mir, ob:
t = R*cos(x) (h-R = t),
r = R*sin(2x)
h = R + [mm] \wurzel{R^2-((R*sin(2x)^2} [/mm]
wenn das stimmt, kann ich es einsetzen und erhalte:

[mm] V(x)=1/3*R*sin(2x)^2*pi*(R [/mm] + [mm] \wurzel{R^2-((R*sin(2x)^2})^2 [/mm]

und nun ? Stimmt das soweit oder was ist falsch? Wie geht es weiter?

Vielen Dank im Voraus!

        
Bezug
Kreiskegel in Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Fr 20.06.2008
Autor: koepper

Hallo Sandy,

warum willst du unbedingt sofort mit dem Winkel arbeiten?
So etwas gibt nur Komplikationen bei der Extremwertbestimmung wegen der Periodizität der trig. Funktionen.

Hauptbedingung: $V(r,h) = [mm] \frac{1}{3} [/mm] * [mm] r^2 [/mm] * [mm] \pi [/mm] * h$

Nebenbedingung: $(h - [mm] R)^2 [/mm] + [mm] r^2 [/mm] = [mm] R^2 \Leftrightarrow r^2 [/mm] = 2hR - [mm] h^2.$ [/mm]

[mm] $r^2$ [/mm] in Hauptbedingung einsetzen und du hast eine handliche Zielfunktion zum Maximieren.

Zur Kontrolle: Das optimale Volumen liegt bei [mm] $\frac{32}{81} \pi R^3$. [/mm]
Der Winkel x ist dann aus dem Verhältnis von h und r mit dem tan leicht zu bestimmen.

LG
Will

Bezug
                
Bezug
Kreiskegel in Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Fr 20.06.2008
Autor: Sandy1

Danke Will für deine Antwort! Leider ist es Vorgabe des Lehrers, das die Funktion in Abhängigkeit des Winkels aufgestellt und abgeleitet werden soll :-(

Bezug
                        
Bezug
Kreiskegel in Kugel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Fr 20.06.2008
Autor: abakus


> Danke Will für deine Antwort! Leider ist es Vorgabe des
> Lehrers, das die Funktion in Abhängigkeit des Winkels
> aufgestellt und abgeleitet werden soll :-(

Das sagt aber nicht, dass du zur Aufstellung von vorn herein mit dem Winkel arbeiten musst! Du kannst die mit h und r gewonnene Zielfunktion am Ende immer noch über  x=arctan(r/h)  in Abhängigkeit von x ausdrücken (und den Arcustangens dann ableiten).
Viele Grüße
Abaus




Bezug
                        
Bezug
Kreiskegel in Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Fr 20.06.2008
Autor: koepper

Hallo Sandy,

in diesem Fall verwende als Nebenbedingungen:

$h = R * (1 + [mm] \cos [/mm] 2x)$ und
$r = R * [mm] \sin [/mm] 2x$.

LG
Will

PS: das wird leider mühsamer ;-)

Bezug
                        
Bezug
Kreiskegel in Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Fr 20.06.2008
Autor: leduart

Hallo
1. Dein Ansaytz war richtig, nur was kompliziert.
2. insgesamt wird es einfacher, wenn du mit
r=R*sin2x  h=r/tanx=Rsin2x/tanx=R*2sinx*cosx/tanx=R*cos^2x rechnest.
Nach dem Differenzieren sin2x*cosx ausklammern.
erst am Ende die Additionsformel für tan2x=2tanx/(1-tan^2x) benutzen
Aber ich denke immer noch, dass du ie anderen Formeln nur r benutzen darfst, wenn du daraus gleich am Anfang hinschreibst, wie man damit x rauskriegt!
sonst sag deinem Lehrer: Mathe ist die kunst unnötige Rechnerei zu vermeiden!
(dass du V auch mit x hinschreiben kannst hast du ja gezeigt!
Gruss leduart.

Bezug
                                
Bezug
Kreiskegel in Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Fr 20.06.2008
Autor: Zwinkerlippe

Allerbeste Grüße in den matheraum
ich übe gerade Extremwertaufgaben, dabei versuche ich Aufgaben vollständig durchzurechnen, bin dabei auf diese Aufgabe gestoßen, ich habe als Ergebnis [mm] h=\bruch{4}{3}R, [/mm] dann [mm] V=\bruch{32}{81}\pi R^{3}, [/mm] dann [mm] x\approx 44,07^{0} [/mm]
jetzt möchte ich den anderen Weg berechnen, leider hänge ich an den Beziehungen r=R*sin(2x)   bei Will steht h=R(1+cos(2x)), würde bedeuten t=R*cos(2x) ???

zunächst mein Bild ist das so richtig?

[Dateianhang nicht öffentlich]

Radius Kugel: [mm] R=\overline{BD}=\overline{DC}=\overline{DA} [/mm]

Radius Kegel: [mm] r=\overline{BE} [/mm]

Höhe Kegel: [mm] h=\overline{AE}=R+t [/mm]

Danke Klaus



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                        
Bezug
Kreiskegel in Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Fr 20.06.2008
Autor: leduart

Hallo Klaus
Wahrscheinlich hast du nur den wichtigen Satz vergessen, dass der Mittelpunktswinkel doppelt so gross wie der Umfangswinkel ist.
also Winkel CDE =2*Winkel CAE
(deine Zeichng ist richtig)
Gruss leduart


Bezug
                                                
Bezug
Kreiskegel in Kugel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 Fr 20.06.2008
Autor: Zwinkerlippe

KLICK, KLICK

Danke leduart, die einfachen Dinge geraten eben doch in Vergessenheit, tschüß Klaus

Bezug
        
Bezug
Kreiskegel in Kugel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 So 22.06.2008
Autor: Sandy1

Vielen Dank für eure Hilfe,ich habe nun endlich eine vernünftige Lösung gefunden!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]