www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Kreis in der Ebene
Kreis in der Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreis in der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 11.02.2007
Autor: Sarah288

Aufgabe
Bestimmen Sie den Kreis, der die [mm] x_1-Achse [/mm] berührt und durch die Punkte P(1|2) und (-3|2) geht.

Hallo zusammen,

ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die dahinter steht, habe ich (endlich!) verstanden.

Ich muss beide Punkte in die Form
[mm] (x_1-r)^2+(x_2-m)^2=r^2 [/mm] bringen und auflösen

Wenn ich beide Formen aufstelle und nach dem Substraktionsverfahren vorgehe, bleibt -8-8r=0 übrig, d.h. der Radius -1, aber ein Radius kann doch nicht negativ sein...

Kann mir vielleicht jemand sagen, wo mein Fehler liegt??
Vielen Dank und liebe Grüße...

        
Bezug
Kreis in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 So 11.02.2007
Autor: leduart

Hallo Sarah
> Bestimmen Sie den Kreis, der die [mm]x_1-Achse[/mm] berührt und
> durch die Punkte P(1|2) und (-3|2) geht.
>  Hallo zusammen,
>  
> ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die
> dahinter steht, habe ich (endlich!) verstanden.
>
> Ich muss beide Punkte in die Form
> [mm](x_1-r)^2+(x_2-m)^2=r^2[/mm] bringen und auflösen

Hier liegt dein Fehler: wenn der Kreis x1 beruhren soll, ist der Mittelpkt (m,r) nicht (r,m)!
Da beide punkte dieselbe x2 Komp. haben kannst du ausserdem direkt schliessen m=(1-3)/2=-1
Gruss leduart



Bezug
                
Bezug
Kreis in der Ebene: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 So 11.02.2007
Autor: Sarah288


Stimmt, du hast recht!

Vielen Dank für deine Antwort...

Liebe Grüße, Sarah

Bezug
        
Bezug
Kreis in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 So 11.02.2007
Autor: riwe


> Bestimmen Sie den Kreis, der die [mm]x_1-Achse[/mm] berührt und
> durch die Punkte P(1|2) und (-3|2) geht.
>  Hallo zusammen,
>  
> ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die
> dahinter steht, habe ich (endlich!) verstanden.
>
> Ich muss beide Punkte in die Form
> [mm](x_1-r)^2+(x_2-m)^2=r^2[/mm] bringen und auflösen
>  
> Wenn ich beide Formen aufstelle und nach dem
> Substraktionsverfahren vorgehe, bleibt -8-8r=0 übrig, d.h.
> der Radius -1, aber ein Radius kann doch nicht negativ
> sein...
>  
> Kann mir vielleicht jemand sagen, wo mein Fehler liegt??
>  Vielen Dank und liebe Grüße...

wenn der kreis die x-achse berühren soll, lautet seine gleichung
[mm](x-m)²+(y-r)²=r²[/mm]
du hast also - wie es scheint - nicht r berechnet, sondern die x-koordinate des mittelpunktes m = -1

und das eingesetzt ergibt r = 2.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]