www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Kreis, Vektor
Kreis, Vektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreis, Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Do 30.04.2009
Autor: Dinker

Aufgabe
Der Kreis k liegt im 1. Quadranbt, berührt die X-Achse, berührt die y-Achse und berührt auch die Gerade g mit der Gleichung x + y = 10
Berechnen Sie den Gemeinsamen Punkt von k und g und den Kreisradius

Hallo
Ich habe eine unbekannte zuviel.


Allgemeine Kreisformel, k: [mm] (x-u)^{2} [/mm] + [mm] (y-v)^{2} [/mm] = [mm] r^{2} [/mm]

Berührt die x und y Achse, d. h.

u = v = r

Berührt die Gerade x + y = 10 (Hier habe ich glaub den Fehler gemacht, dass ich von geschnitten ausging)

Die Punkte auf der Gerade g haben die Koordinate P (s/10-s)
Der Kreismittelpunkt sage ich einmal M(r/r)

b: [mm] \overrightarrow{rx} [/mm] = [mm] \vektor{r \\ r} [/mm] + p [mm] \vektor{1 \\ 1} [/mm]

Ich komem da leider nicht wirklich weiter

Danke
Gruss Dinker




        
Bezug
Kreis, Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Do 30.04.2009
Autor: M.Rex

Hallo


Du hast einen Kreis zu bestimmen mit

[mm] K:(x-x_{m})²+(y-y_{m})²=r^{2} [/mm]

Hierbei hast du drei unbekannte.

Jetzt kommen die drei Geraden, die K berühren soll, ins Spiel:
x-Achse, also y=0
Setze diese mal in K ein, also:
[mm] (x-x_{m})²+(0-y_{m})²=r^{2} [/mm]
[mm] \gdw x²-2x_{m}+x_{m}^{2}+y_{m}^{2}=r^{2} [/mm]
[mm] \gdw x²-2x_{m}+x_{m}^{2}-y_{m}^{2}-r^{2}=0 [/mm]
[mm] \Rightarrow x_{1,2}=x_{m}\pm\wurzel{x_{m}^{2}-(x_{m}^{2}-y_{m}^{2}-r^{2})} [/mm]
und, da es nur einen Schnittpunkt mit der x-Achse geben soll, muss der Radikand =0 sein, also
[mm] \green{x_{m}^{2}-(x_{m}^{2}-y_{m}^{2}-r^{2})=0} [/mm]

y-Achse (x=0)
mit der Gleichen Begründung wie bei der x-Achse gilt:
[mm] (0-x_{m})²+(y-y_{m})²=r^{2} [/mm]
[mm] \gdw y_{1;2}=x_{m}\pm\wurzel{y_{m}^{2}-(y_{m}^{2}-x_{m}^{2}-r^{2})} [/mm]
Also [mm] \green{y_{m}^{2}-(y_{m}^{2}-x_{m}^{2}-r^{2})=0} [/mm]

Genaudasselbe machst du mit der gegebene Gerade g:x+y=10, also
[mm] (x-x_{m})²+(\blue{-x+10}-y_{m})²=r^{2} [/mm]
[mm] \gdw x_{1;2}=... [/mm]

Damit bekommst du dann drei Gleichungen mit drei Parametern, [mm] x_{m}, y_{m} [/mm] und r.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]