www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Kreis
Kreis < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 21.01.2014
Autor: bennoman

Hallo zusammen,
folgende Aufgabe: Ein kreis hat den mittelpunkt m und den radius r. erklären sie, wie man den abstand eines punktes p von der kreislinie bestimmen kann.
M(3/4/-2), r=4 und p(7/12/-2).
Ich gehe nun davon aus, dass p außerhalb des Kreises liegt.
Meine Frage:
Geht die Strecke, die von p ausgeht und den Abstand darstellt, wenn man sie sozusagen verlängert durch den Mittelpunkt m?
Gruß
Benno

        
Bezug
Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 21.01.2014
Autor: Diophant

Hallo,

> Hallo zusammen,
> folgende Aufgabe: Ein kreis hat den mittelpunkt m und den
> radius r. erklären sie, wie man den abstand eines punktes
> p von der kreislinie bestimmen kann.
> M(3/4/-2), r=4 und p(7/12/-2).
> Ich gehe nun davon aus, dass p außerhalb des Kreises
> liegt.
> Meine Frage:
> Geht die Strecke, die von p ausgeht und den Abstand
> darstellt, wenn man sie sozusagen verlängert durch den
> Mittelpunkt m?

Genau so ist es, und dies liefert dir auch den bequemsten Ansatz für die Aufgabe. Dir fehlt nur noch der Abstand [mm] \overline{MP}... [/mm]

Gruß, Diophant

Bezug
                
Bezug
Kreis: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:18 Di 21.01.2014
Autor: bennoman

Den Abstand MP kann ich recht leicht berechnen und beträgt hier 8,94.
8,94 - 4=4,94 ist dann die Entfernung des punktes p zur kreislinie.

Bezug
                        
Bezug
Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Di 21.01.2014
Autor: Diophant

Hallo,

> Den Abstand MP kann ich recht leicht berechnen und beträgt
> hier 8,94.
> 8,94 - 4=4,94 ist dann die Entfernung des punktes p zur
> kreislinie.

Wenn schon: [mm] \wurzel{80}-4 [/mm] LE.

Aber, wie sax schon angemerkt hat: ich habe hier nicht aufgepasst. Diese Vorgehensweise stimmt nur für den Fall, dass der Kreis parallel zur [mm] x_1x_2-Ebene [/mm] liegt. Das hast du jedoch nicht angegeben.

Gruß, Diophant

Bezug
                                
Bezug
Kreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Di 21.01.2014
Autor: bennoman

Ok ich glaube ich habe es:
[mm] \overline{mp}^2=\overline{qp}^2+r^2 [/mm]
Wenn q der Punkt ist, bei dem die Strecke auf die Kreislinie trifft.

Bezug
                                        
Bezug
Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:37 Mi 22.01.2014
Autor: leduart

Hallo
sag uns erstmal, woher die aufgabe stamm? ist es ein ebenes oder ein 3dimensionales Problem?
wenn 3 D, mal einen Kreis  auf dein Papier  auf die Kreislinie stell deinen Stift, sein anderes Ende de ist P. jetzt nerechne ddie Länge des Stifts aus r und  MP.
deine Formel ist falsch, Am einfachsten projizierst du P in die Ebene ubd rechnest erst die projizierte Entfernung aus.
Gruss leduart

Bezug
                
Bezug
Kreis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Di 21.01.2014
Autor: Sax

Hi,

nein, das muss überhaupt nicht der Fall sein, wenn es sich wirklich um einen Kreis handelt. Lediglich für eine Kugel ist die Antwort zutreffend. Im Falle des Kreises fehlt die entscheidende Information, in welcher Ebene der Kreis denn liegt.

Gruß Sax.

Bezug
                        
Bezug
Kreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Di 21.01.2014
Autor: bennoman

Und wie sieht es denn jetzt aus, wenn der kreis nicht in der x1x2 ebene liegt?

Bezug
                                
Bezug
Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Mi 22.01.2014
Autor: Sax

Hi,

die x-y-Ebene hat damit gar nichts zu tun.

Wenn der Kreis in der Ebene E : [mm] (\vec{x}- \vec{m})*\vec{n}=0 [/mm] liegt (M : Kreismittelpunkt, [mm] \vec{n} [/mm] Normalenvektor), dann stellst du die Ebene F mit dem Stützvektor [mm] \vec{m} [/mm] und den Richtungsvektoren [mm] \vec{n} [/mm] und [mm] \overrightarrow{MP} [/mm] auf. E und F haben die Schnittgerade g, g und die Kreislinie k haben die Schnittpunkte [mm] S_1 [/mm] und [mm] S_2. [/mm] Durch [mm] PS_1 [/mm] und [mm] PS_2 [/mm] sind
die beiden extremalen Abstände von P zu k gegeben.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]