www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Kraft auf Dielektrikum
Kraft auf Dielektrikum < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kraft auf Dielektrikum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 So 16.10.2005
Autor: steelscout

Ok, zunächst mal die Aufgabe:
Mit welcher Kraft wird eine dielektrische Platte [mm] (\varepsilon) [/mm] der Dicke d in einen Plattenkondensator hereingezogen, wenn sich auf diesem eine konstante Ladung Q befindet. Fläche des Kondensators = a*b und Dicke d.

Ich habe versucht über die Energiedifferenz bei Reinsaugen des Dielektrikums an die verrichtete Arbeit und somit an die Kraft heran zu kommen.
Also wenn [mm] U_{x} [/mm] die Energie des Feldes bei reingezogenem Dielektrikum bis zur Stelle x [mm] (0\le [/mm] x [mm] \le [/mm] a) bezeichnet, dann wäre:
[mm] U_{0} [/mm] - [mm] U_{x} [/mm] = [mm] \integral_{0}^{x} [/mm] {F(r) dr}
Während ich die linke Seite problemlos auf bekannte Variableb reduzieren kann, weiß ich nicht, wie ich die Kraft auf der rechten Seite "freibekomme". Einfach aus dem Integral rausziehen wird nix werden, da F nicht konstant ist und ich bin mir nicht sicher, ob man einfach beide Seiten nach x ableiten kann, glaube es aber eher nicht.
Und da mir kein anderer Ansatz einfällt, wäre ich euch echt verbunden, wenn jemand nen Tipp parat hätte.

        
Bezug
Kraft auf Dielektrikum: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 11:36 Mo 17.10.2005
Autor: kruder77

Hallo erstmal,

> Ok, zunächst mal die Aufgabe:
>  Mit welcher Kraft wird eine dielektrische Platte
> [mm](\varepsilon)[/mm] der Dicke d in einen Plattenkondensator
> hereingezogen, wenn sich auf diesem eine konstante Ladung Q
> befindet. Fläche des Kondensators = a*b und Dicke d.


[mm] \integral_{s=0}^{s=a} {\overrightarrow{F} d \overrightarrow{s}}=W_{1}-W_{2} [/mm]

Die Arbeiten [mm] W_{1} [/mm] und [mm] W_{2} [/mm] errechnest Du über die sich ändernen Werte für Spannung und Kapazität. Vorher hattest Du ja nur [mm] \epsilon_{0} [/mm] und danach [mm] \epsilon=\epsilon_{0}*\epsilon{r}... [/mm]

[mm] C=\bruch{\epsilon*A}{d} [/mm]

[mm] U_{1}=\bruch{Q}{C_{1}} [/mm]
[mm] U_{2}=\bruch{Q}{C_{2}} [/mm]

[mm] W=\bruch{1}{2*C*U^{2}} [/mm]

Gruß
kruder77

Bezug
        
Bezug
Kraft auf Dielektrikum: Ansatz richtig
Status: (Antwort) fertig Status 
Datum: 16:40 Mo 17.10.2005
Autor: leduart

Hallo steelscout

>  [mm]U_{0}[/mm] - [mm]U_{x}[/mm] = [mm]\integral_{0}^{x}[/mm] {F(r) dr}

Deine Schreibweise mit U als Energie ist etwas irritierend, ich verwende lieber W. und dann heisst dein Ausdruck doch nichts anderes als dW=Fds
oder [mm] F=\bruch{dW}{ds}. [/mm] Und da:
C(s) =( [mm] \varepsolon_{0}*b*(a-s)+\varepsolon_{0}*\varepsolon_{r}*b*s)/d [/mm]
geschrieben werden kann, und mit [mm] W=\bruch{Q^{2}}{2*C} [/mm] bist du fertig.

>  Während ich die linke Seite problemlos auf bekannte
> Variableb reduzieren kann, weiß ich nicht, wie ich die
> Kraft auf der rechten Seite "freibekomme". Einfach aus dem
> Integral rausziehen wird nix werden, da F nicht konstant
> ist und ich bin mir nicht sicher, ob man einfach beide
> Seiten nach x ableiten kann, glaube es aber eher nicht.

Warum nicht? Jede differenzierbare Funktion kannst du ableiten!
Grus leduart


Bezug
                
Bezug
Kraft auf Dielektrikum: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:15 Mo 17.10.2005
Autor: kruder77

Hallo leduart,

wo bitte liegt denn der Fehler bei meiner Antwort? (Das stammt 1:1 aus dem Skript vom Prof.)

Gruss
kruder

Bezug
                        
Bezug
Kraft auf Dielektrikum: W falsch
Status: (Antwort) fertig Status 
Datum: 18:55 Mo 17.10.2005
Autor: leduart

Hallo Kruder
1. gefragt war genau, wie man aus dem Integral F berechnet! darauf hast du icht geantwortet.
2. Dein W ist falsch, vielleicht hast du dich nur verschrieben [mm] W=0,5C*U^{2} [/mm]
Gruss leduart

Bezug
                                
Bezug
Kraft auf Dielektrikum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Mo 17.10.2005
Autor: kruder77

Hallo leduart,

>  1. gefragt war genau, wie man aus dem Integral F
> berechnet! darauf hast du icht geantwortet.
>  2. Dein W ist falsch, vielleicht hast du dich nur
> verschrieben [mm]W=0,5C*U^{2}[/mm]

1) Ja, weil ich es nicht genau wusste und nichts falsches erzählen wollte...
2) Ja stimmt habe ich falsch abgetippst...

Gruss
kruder

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]