www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Kovarianz
Kovarianz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Di 27.05.2008
Autor: cauchy

Hallo, ich habe eine allgemeine Frage zur Kovarianz!
In meinem Lehrbuch steht, dass

$$ Cov(X,Y) = [mm] \summe_{\omega \in \Omega}^{}(X(\omega)-E(X))(Y(\omega)-E(Y))P(\omega) [/mm] $$

ist.
Meine Frage ist: Da X und Y (i. d. R.) unterschiedliche Zufallsvariablen sind, ist jedem [mm] \omega \in \Omega [/mm] ja u. U. eine andere Wahrscheinlichkeit zugeteilt.
Für welche Wahrscheinlichkeit entscheide ich mich also, wenn ich die Kovarianz berechne, da hinten ja nur [mm] $P(\omega)$ [/mm] steht...
Danke, für die Hilfe, Gruß, cauchy

        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Di 27.05.2008
Autor: Marc

Hallo cauchy,

> [mm]Cov(X,Y) = \summe_{\omega \in \Omega}^{}(X(\omega)-E(X))(Y(\omega)-E(Y))P(\omega)[/mm]
>  
> ist.
>  Meine Frage ist: Da X und Y (i. d. R.) unterschiedliche
> Zufallsvariablen sind, ist jedem [mm]\omega \in \Omega[/mm] ja u. U.
> eine andere Wahrscheinlichkeit zugeteilt.

Nein, das ist ein Missverständnis. Das Wahrscheinlichkeitsmaß P ist eindeutig. Vielleicht verwechselst du das damit, dass die Zufallsvariablen ihre Werte mit verschiedener Wahrscheinlichkeit annehmen können. Also

[mm] $P(X=k):=P\{\omega\in\Omega\ :\ X(\omega)=k\}$ [/mm]

[mm] $P(Y=k):=P\{\omega\in\Omega\ :\ Y(\omega)=k\}$ [/mm]

Hier gilt im Allgemeinen: [mm] $P(X=k)\not=P(Y=k)$ [/mm]

Mit "P" ist also (auch in deiner Formel) immer dasselbe Wahrscheinlichkeitsmaß gemeint.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]