www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kov zw. Mittelw. und Var.
Kov zw. Mittelw. und Var. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kov zw. Mittelw. und Var.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Mo 20.03.2006
Autor: ivo82

Aufgabe
Stelle KOV( [mm] \overline{X}, S^{2}) [/mm] mit Hilfe der Momente dar!
Wann ist diese 0?

Angenommen [mm] X_{1},...,X_{n} [/mm] sei eine Zufallsstichprobe und es existieren die ersten vier Momente der [mm] X_{i} [/mm] ´s dann ist die Kovarianz zwischen dem Stichprobenmittelwert [mm] (\overline{X}) [/mm] und der Stichprobenvarianz [mm] (S^{2}) [/mm] zu berechnen.
Ich hab da zunächst diesen Ansatz:
[mm] E[(\overline{X}-E(\overline{X}))*(S^{2}-E(S^{2}))] [/mm]
Für [mm] S^{2} [/mm] hab ich [mm] \bruch{1}{n-1}*([ \summe_{i=1}^{n}X_{i}^{2}]-n*\overline{X}^{2}) [/mm] eingesetzt.
Für [mm] E(S^{2}) [/mm] hab ich folgende Formel aus der Vorlesung verwendet:
[mm] \bruch{n}{n-1}*[E(X_{i}^2)-E(\overline{X})^2]. [/mm]
[mm] E(\overline{X}) [/mm] hab ich einfach gelassen.
Nach langem Rechnen bin ich dann auf folgendes Resultat gekommen:
[mm] \bruch{n}{n-1}*[\overline{X}*E(\overline{X})^{2}-\overline{X}^{3}-E(\overline{X})^{3}+\overline{X}^2*E(\overline{X})] [/mm]
Nullsetzen brachte mich schließlich auf:
[mm] \overline{X}=-E(\overline{X}) [/mm]
als Bednigung für eine Kovarianz von 0, irgendwo hat sich ein Vorzeichenfehler eingeschlichen ich neheme an [mm] \overline{X}=E(\overline{X}) [/mm] macht mehr Sinn, d.h. wenn der Stichprobenmittelwert exakt dem Mittelwert in der Grundgesamtheit entspricht ist die Kovarianz 0.
Stimmt das oder bin ich völlig auf dem Holzweg, bzw. wie kann ich das Ergebnis weiter oben in Form von Momenten anschreiben?

Ich habe diese Frage in keinem anderen Internet Forum gestellt

        
Bezug
Kov zw. Mittelw. und Var.: Antwort
Status: (Antwort) fertig Status 
Datum: 01:29 Mi 22.03.2006
Autor: djmatey

Hallo,
ich bekomme da raus, dass
Cov( [mm] \overline{X},S^{2}) [/mm] = [mm] \bruch{2n}{n-1} E(\overline{X})^{3} [/mm]
ist.
Und das ist genau dann gleich 0, wenn
[mm] E(\overline{X}) [/mm] = 0
gilt.
Es kommt mir auch komisch vor, dass in Deinem Ergebnis noch [mm] \overline{X} [/mm] vorkommt, denn Du nimmst ja den Erwartungswert des Ganzen...
Beste Grüße,
Matthias.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]