www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Kosinusgleichung
Kosinusgleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosinusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Di 10.01.2012
Autor: steve.joke

Hallo,

ich habe gerade ein Brett vor dem Kopf, wie löst man nochmal

cos(x)=-cos(2x)?? als ergebnis kriegt man [mm] x=\bruch{\pi}{3}. [/mm] Aber wie berechnet man das??

        
Bezug
Kosinusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Di 10.01.2012
Autor: reverend

Hallo steve,

> ich habe gerade ein Brett vor dem Kopf, wie löst man
> nochmal
>  
> cos(x)=-cos(2x)?? als ergebnis kriegt man [mm]x=\bruch{\pi}{3}.[/mm]
> Aber wie berechnet man das??

Du löst mit dem passenden Additionstheorem den Term [mm] \cos{(2x)} [/mm] auf:

[mm] \cos{(2x)}=\cos^2{(x)}-\sin^2{(x)}=2\cos^2{(x)}-1 [/mm]

Dann einsetzen, evtl. noch [mm] \cos{x}=z [/mm] ersetzen, und Du hast eine gewöhnliche quadratische Gleichung.

Grüße
reverend


Bezug
                
Bezug
Kosinusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Di 10.01.2012
Autor: steve.joke

HI,

ok. danke.

wenn die quadratische gleichung dann löse, dann kriege ich

[mm] z_1=1 [/mm] und [mm] z_2=0,5 [/mm]

d.h. cos(x)=1 und cos(x)=0,5

wie kommt man jetzt auf die [mm] x=\bruch{\pi}{3}??? [/mm]

Bezug
                        
Bezug
Kosinusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Di 10.01.2012
Autor: schachuzipus

Hallo steve.joke,


> HI,
>  
> ok. danke.
>  
> wenn die quadratische gleichung dann löse, dann kriege
> ich
>  
> [mm]z_1=1[/mm]

Nicht doch [mm] $z_1=\red{-}1$ [/mm] ?

> und [mm]z_2=0,5[/mm]
>  
> d.h. cos(x)=1 und cos(x)=0,5
>  
> wie kommt man jetzt auf die [mm]x=\bruch{\pi}{3}???[/mm]  

Entweder zeichnest du dir den Graphen des Kosinus aus oder du kennst gewisse Werte (was man sicher tun sollte)

Ansonsten kannst du es (mit dem TR) auflösen, wende die Umkehrfunktion des Kosinus, den Arcuskosinus an ...

Die angegebene Lösung ist aber bei Weitem nicht die einzige ...

Oder hast du ein Lösungsintervall vorgegeben?

Gruß

schachuzipus


Bezug
                                
Bezug
Kosinusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Di 10.01.2012
Autor: steve.joke

Ne,

war kein Intervall vorgegeben.

Ok, danke euch.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]