www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Koordinatensysteme mit Spiegel
Koordinatensysteme mit Spiegel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatensysteme mit Spiegel: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:18 Do 05.01.2006
Autor: mathe-gerd

Aufgabe
Im dreidimensionalen Raum [mm] \IR^3 [/mm] sei die Ebene E gegeben durch
[mm] \vektor{x \\ y \\ z} [/mm] | x + y+ z = 0
Sei f: [mm] \IR³ \to \IR³ [/mm] die lineare Abbildung, die jedem Bild sein Spiegelbild bzgl. E zuordnet.
1. Gib ein Koordinatensystem [mm] \phi [/mm] = [mm] (\phi_{1}. \phi_{2}, \phi_{3}) [/mm] an mit [mm] f\phi_{1} [/mm] = [mm] \phi_{1}, f\phi_{2} [/mm] = [mm] \phi_{2} [/mm] und [mm] f\phi_{3} [/mm] = [mm] -\phi_{3}. [/mm]
Bestimme [mm] M\phi(f) [/mm]
2. Bestimme [mm] M\phi'(f) [/mm] für [mm] \phi' [/mm] = [mm] (e_{1}, e_{2}, e_{3}) [/mm]

Bräuchte hier hauptsächlich für Teil 1 ne Starthilfe. Bei 2 weiss ich glaub ich ungefähr selber wie es geht. Einfach mit der Transformationsmatrix bzw. formel oder??
Danke schon mal für eure Gedanken

Ich habe diese Fragen in keinem anderen Forum gestellt

        
Bezug
Koordinatensysteme mit Spiegel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Do 05.01.2006
Autor: felixf


> Im dreidimensionalen Raum [mm]\IR^3[/mm] sei die Ebene E gegeben
> durch
> [mm]\vektor{x \\ y \\ z}[/mm] | x + y+ z = 0
> Sei f: [mm]\IR³ \to \IR³[/mm] die lineare Abbildung, die jedem Bild
> sein Spiegelbild bzgl. E zuordnet.
>  1. Gib ein Koordinatensystem [mm]\phi[/mm] = [mm](\phi_{1}. \phi_{2}, \phi_{3})[/mm]
> an mit [mm]f\phi_{1}[/mm] = [mm]\phi_{1}, f\phi_{2}[/mm] = [mm]\phi_{2}[/mm] und
> [mm]f\phi_{3}[/mm] = [mm]-\phi_{3}.[/mm]
>  Bestimme [mm]M\phi(f)[/mm]
>  2. Bestimme [mm]M\phi'(f)[/mm] für [mm]\phi'[/mm] = [mm](e_{1}, e_{2}, e_{3})[/mm]
>  
> Bräuchte hier hauptsächlich für Teil 1 ne Starthilfe. Bei 2
> weiss ich glaub ich ungefähr selber wie es geht. Einfach
> mit der Transformationsmatrix bzw. formel oder??
>  Danke schon mal für eure Gedanken

Nun, die Vektoren [mm] $\phi_1$ [/mm] und [mm] $\phi_2$ [/mm] muessen auf $E$ liegen. Also bestimme eine Basis von $E$ und nehme diese Vektoren als [mm] $\phi_1$ [/mm] und [mm] $\phi_2$. [/mm] Und [mm] $\phi_3$ [/mm] muss dann orthogonal auf $E$ stehen. Hilft dir das weiter?

LG Felix


Bezug
                
Bezug
Koordinatensysteme mit Spiegel: Erleuchtung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Do 05.01.2006
Autor: mathe-gerd

Ich denke schon, dass ich damit was anfangen kann. Werd mich auch mal gleich daran setzen. Wenn es dennoch nicht klappt, meld ich mich :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]