www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Koordinatengleichung e. Ebene
Koordinatengleichung e. Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengleichung e. Ebene: Wie mach ich das aus einer Par
Status: (Frage) beantwortet Status 
Datum: 15:59 Mi 14.12.2005
Autor: Golem2002

Aufgabe
Ich weiß nicht ob hier auch Vektoren mit drei Koordinaten reingeschrieben werden können falls nicht hoffe ich das ihr das hier entziffern könnt.
Gewinnen Sie aus der Parametergleichung die Koordinatengleichung
E:X= [mm] \vektor{2 \\ 2 \\ 1} [/mm] + r* [mm] \vektor{1 \\ -2 \\ 3} [/mm] + s* [mm] \vektor{2 \\ 5 \\ 7} [/mm]

Nun wie ist der erste Schritt dabei, ich hab mich zwar schon schlau gelesen, aber ich kann die Vorgänge leider nicht ganz nachvollziehen, es wäre schön wenn jemand den Anfang machen könnte ich würde mich bemühen die Aufgabe vortzusetzen.
Vielen Dank schonmal

        
Bezug
Koordinatengleichung e. Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 14.12.2005
Autor: Zwerglein

Hi, Golem,

> Gewinnen Sie aus der Parametergleichung die
> Koordinatengleichung
>  E:X= [mm]\vektor{2 \\ 2 \\ 1}[/mm] + r* [mm]\vektor{1 \\ -2 \\ 3}[/mm] + s*
> [mm]\vektor{2 \\ 5 \\ 7}[/mm]

Na: Das kommt auf Dein Vorwissen an!
(1) Wenn Du Dich mit Vektorprodukt und Skalarprodukt auskennst, gehst Du so vor:
Du bildest das Kreuzprodukt der Richtungsvektoren. Dann erhältst Du den Normalenvektor [mm] \vec{n}. [/mm]
Den setzt Du in die Formel ein: [mm] \vec{n} \circ (\vec{x} [/mm] - [mm] \vec{a}) [/mm] = 0
(wobei [mm] \vec{a} [/mm] der Ortsvektor des Aufpunkes A Deiner Ebene ist).
Ausmultiplizieren, vereinfachen: fertig!

(2) Wenn Du diese Produkte nicht kennst, musst Du die Ebenengleichung als Gleichungssystem mit 3 Gleichungen schreiben, aus denen Du die beiden Parameter r und s eliminierst.

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]