www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Koordinatengleichung Ebene
Koordinatengleichung Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengleichung Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mo 15.03.2010
Autor: Stjaerna

Aufgabe
Bestimme eine Koordinatengleichung der Ebene E:
E ist parallel zur [mm]x_1x_2[/mm]-Ebene und geht durch den Punkt P (1/2/-3).

Hallo,
ich bräuchte Hilfe bei der oben genannten Aufgabe. Ich weiß zwar, dass in diesem Fall [mm]n_1[/mm] und [mm]n_2[/mm] gleich null sein müssen, doch dann komme ich nicht weiter. Setzte ich den Punkt P noch ein, komme ich zu folgendem Ergebnis: -3[mm]n_3[/mm]+[mm]n_0[/mm]=0.
Wie mache ich jetzt weiter, was ist falsch an meiner Überlegung?
Für Hilfe wäre ich sehr dankbar.
Liebe Grüße

        
Bezug
Koordinatengleichung Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 15.03.2010
Autor: fred97


> Bestimme eine Koordinatengleichung der Ebene E:
>  E ist parallel zur [mm]x_1x_2[/mm]-Ebene und geht durch den Punkt P
> (1/2/-3).
>  Hallo,
> ich bräuchte Hilfe bei der oben genannten Aufgabe. Ich
> weiß zwar, dass in diesem Fall [mm]n_1[/mm] und [mm]n_2[/mm] gleich null
> sein müssen,

Was ist denn [mm] n_1, n_2 [/mm]  ?????



> doch dann komme ich nicht weiter. Setzte ich
> den Punkt P noch ein, komme ich zu folgendem Ergebnis:
> -3[mm]n_3[/mm]+[mm]n_0[/mm]=0.


Wie gesagt, wenn Du nicht verrätst, was mit [mm] n_3, n_0 [/mm] gemeint ist ......



>  Wie mache ich jetzt weiter, was ist falsch an meiner
> Überlegung?
>  Für Hilfe wäre ich sehr dankbar.

Jede Ebene parallel zur [mm] x_1-x_2 [/mm] - Achse hat die gl. [mm] x_3 [/mm] = c   (mit einem geeigneten c)

FRED




>  Liebe Grüße


Bezug
                
Bezug
Koordinatengleichung Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Mo 15.03.2010
Autor: Stjaerna


> Was ist denn [mm]n_1, n_2[/mm]  ?????

Also [mm]n_1[/mm] und [mm]n_2[/mm] entstammen aus der skalaren Normalengleichung der Ebene E: [mm]n_1x_1[/mm]+[mm]n_2x_2[/mm]+[mm]n_3x_3[/mm]+[mm]n_0[/mm]=0.

Das heißt also, die vollständige Koordinatengleichung lautet schon -3[mm]x_3[/mm]+[mm]n_0[/mm]=0 ? [mm]n_0[/mm] bleibt also unbestimmt? Oder gibt es eine Möglichkeit, auch das zu berechnen?

LG


Bezug
                        
Bezug
Koordinatengleichung Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Mo 15.03.2010
Autor: fred97

Nochmal: deine Ebene hat die Gl.:    $ [mm] x_3 [/mm] = c $

P liegt in der Ebene. Was folgt für c ?

FRED

Bezug
                                
Bezug
Koordinatengleichung Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Mo 15.03.2010
Autor: Stjaerna

Ist dann c= -3[mm]x_3[/mm] ???

Bezug
                                        
Bezug
Koordinatengleichung Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mo 15.03.2010
Autor: fred97

Wie kommst Du denn darauf ?

Ist es hilfreichwenn ich die Ebene inder Form

           (*)        [mm] $0*x_1+0*x_2+1*x_3=c$ [/mm]

schreibe  ? P hat die Koordinaten (1|2|-3)

FRED

Bezug
                                                
Bezug
Koordinatengleichung Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Mo 15.03.2010
Autor: Stjaerna

Dann ist c= -3?

Bezug
                                                        
Bezug
Koordinatengleichung Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 15.03.2010
Autor: fred97


> Dann ist c= -3?

Bingo !

FRED

Bezug
                                                                
Bezug
Koordinatengleichung Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 Mo 15.03.2010
Autor: Stjaerna

Okay, alles klar :) Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]