www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Koordinatenbestimmung
Koordinatenbestimmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Di 14.11.2006
Autor: Cyance

Aufgabe
Bestimmen sie die Koordinaten des Punktes P (entspricht Gf [ = 0,16666 (- [mm] x^3 [/mm] -3 [mm] x^2 [/mm] +9x+27) ] )in dem die Tangente an den Graphen Gf dieselbe Steigung besitzt, wie die Tangente (1,5x + 3,8333)an Gf im Punkt Q(-2/5).

Ja, mir fehlt ein Ansatz, um die Aufgabe überhaupt anzufangen. Sie(t) hat dieselbe Steigung 1,5.
Aber wie weiter?

lbg C.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Koordinatenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Di 14.11.2006
Autor: Zwerglein

Hi, Cyance,

> Bestimmen sie die Koordinaten des Punktes P (entspricht Gf
> [ = 0,16666 (- [mm]x^3[/mm] -3 [mm]x^2[/mm] +9x+27) ] )in dem die Tangente an
> den Graphen Gf dieselbe Steigung besitzt, wie die Tangente
> (1,5x + 3,8333)an Gf im Punkt Q(-2/5).

Der Punkt Q hat die y-Koordinate [mm] \bruch{5}{6}, [/mm] nicht 5.

Dein Ansatz für die Aufgabe lautet: f'(x) = 1,5
Daraus berechnest Du 2 x-Werte; einer davon wird -2 sein, der andere ist die x-Koordinate von P.

mfG!
Zwerglein

Bezug
                
Bezug
Koordinatenbestimmung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:47 Di 14.11.2006
Autor: Cyance

oh, danke für die schnelle AW.

Das es die Steigung ist wusste ich bereits, aber ich kann doch aus einem x-Wert keinen x-Wert ausrechen. Also aus 1,5 kann nich -2 werden. Muss ich 1,5 vlt mit einer Fkt gleichsetzen? Mit f(x)? Und dann x- und y-Werte berechnen?

lbg C.

Bezug
                        
Bezug
Koordinatenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Di 14.11.2006
Autor: Brinki

Hallo Cyance,
Deine Funktion lautet: [mm]f(x)=- x^3 -3 x^2 +9x+27[/mm], wenn ich deine Darstellung richtig verstanden habe. Diese Funktion musst du nun ableiten!

Du erhälst eine Ableitungsfunktion (vom Grad 2), die an jeder Stelle x die zugehörige Steigung des Schaubildes liefert.

Na ja, diese Steigung soll nun gleich 1,5 sein, das hast du ja bereits. Setzte also den Funktionsterm deiner abgeleiteten Funktion gleich 1,5 und löse nach x auf. Da $f'(x)$ vom Grad 2 ist, wirst du vermutlich eine zweite Lösung bekommen.

Grüße
Brinki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]