www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Koordinaten eines Polynoms
Koordinaten eines Polynoms < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten eines Polynoms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 So 13.02.2011
Autor: Cherrykiss

Aufgabe
Berechnen sie die koordinaten des polynoms
p(t)= 4 + t - t²
in der Basis [mm] \pmat{ 1 & 1 & 1\\ 1 & -1 & 0 \\ 0 & 0 & 0 }. [/mm]

Hallo Matheraum,

ich habe diese Aufgabe und ich weiß nicht was ich machen muss um auf die Koordinaten zu kommen. Kann mir jemand eine kleine Anleitung geben? Rechnen würde ich es dann gern selbst.

LG
Cherrykiss

        
Bezug
Koordinaten eines Polynoms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 So 13.02.2011
Autor: Zwerglein

Hi, Cherrykiss,

das geht gar nicht, da die vorgegebenen Vektoren linear abhängig sind und daher keine Basis des Vektorraums der Polynome höchstens 2.Grades bilden!

mfG!
Zwerglein

Bezug
                
Bezug
Koordinaten eines Polynoms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 So 13.02.2011
Autor: Cherrykiss

Ich habe einen Fehler in der Matrix gehabt. Sie müsste wie folgt aussehen:

[mm] \pmat{ 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 } [/mm]

Und wir müsste es gehandhabt werden, wenn die Basisvektoren liniear unabhängig wären?

Bezug
                        
Bezug
Koordinaten eines Polynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 So 13.02.2011
Autor: Al-Chwarizmi


> Ich habe einen Fehler in der Matrix gehabt. Sie müsste wie
> folgt aussehen:
>
> [mm]\pmat{ 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 }[/mm]
>  
> Und wir müsste es gehandhabt werden, wenn die
> Basisvektoren liniear unabhängig wären?


Jetzt sind sie es ja auch.
Falls ich die Notation richtig verstanden habe, gehört zum
gegebenen Polynom  [mm] p(t)=4+t-t^2 [/mm]  der Vektor [mm] \pmat{4\\1\\-1}, [/mm]
der nun als Linearkombination der Spaltenvektoren der
gegebenen Matrix geschrieben werden soll, also:

     [mm] $\pmat{4\\1\\-1}\ [/mm] =\ [mm] a_1*\pmat{1\\1\\0}+a_2*\pmat{1\\-1\\0}+a_3*\pmat{1\\0\\1}$ [/mm]

Dann ist [mm] \pmat{a_1&a_2&a_3} [/mm]  das "Koordinatentripel" von p in Bezug auf die neue Basis.


LG    Al-Chw.  


Bezug
                                
Bezug
Koordinaten eines Polynoms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 So 13.02.2011
Autor: Cherrykiss

Vielen Dank, das hilft mir sehr.

LG
Cherrykiss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]