www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzüberprüfung
Konvergenzüberprüfung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzüberprüfung: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:50 Di 10.07.2007
Autor: cathrin07

Aufgabe
Man beweise die Konvergenz (und berechne) den Grenzwert der Folge (Xn) mit X=1 und X(n+1)= [mm] \wurzel (1 + Xn) [/mm]' für alle n € N . (das n+1) gehört in den Index..

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich möchte die Konvergenz über die Monotonie (wachsend) und über die Beschränktheit nach oben zeigen. Nur habe ich das Problem, dass ich bei dem Beweis für die Monotonie nicht weiter komme. D.h. ich möchte beweisen:
Xn [mm] \le [/mm] X(n+1).  

Ab hier drehe ich mich ständig im Kreis. Denn ich komme immer wieder auf Xn [mm] \le [/mm] X(n+1).


Vieleicht kann mir jemand helfen, schon mal vielen Dank im vorraus!




        
Bezug
Konvergenzüberprüfung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 Mi 11.07.2007
Autor: mathemaduenn

Hallo cathrin07,
[willkommenmr]
Es wird wohl an der Tageszeit liegen. [kaffeetrinker]

> D.h. ich möchte beweisen:
>  Xn [mm]\le[/mm] X(n+1).  
>
> Ab hier drehe ich mich ständig im Kreis. Denn ich komme
> immer wieder auf Xn [mm]\le[/mm] X(n+1).

Das war doch das was Du beweisen wolltest. ;-)
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]