www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konvergenzradius bestimmen
Konvergenzradius bestimmen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Mo 19.01.2009
Autor: MatheSpass

Aufgabe
Bestimmen Sie den Konvergenzradius der Potenzreihe [mm] \summe_{n=0}^{\infty} (z^2 [/mm] + [mm] b^n )z^n [/mm] , wobei b [mm] \in \IC [/mm]

Hallo,
ich kriege diese Aufgabe nicht hin. Ich weiß nicht einmal, wie ich anfangen soll. Wenn ich die Klammer ausmultipliziere, kann ich ja die Summen nicht auseinanderziehen, das ginge ja nur innerhalb des Radius, den ich aber erst bestimmen muss.
Kann mir bitte jemand einen Tipp geben, wie ich da rangehen soll?
Danke schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

EDIT: Bis eben stand oben noch [mm] b_n [/mm] und nicht [mm] b^n... [/mm]


        
Bezug
Konvergenzradius bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Mo 19.01.2009
Autor: fred97


> Bestimmen Sie den Konvergenzradius der Potenzreihe
> [mm]\summe_{n=0}^{\infty} (z^2[/mm] + [mm]b_n )z^n[/mm] , wobei b [mm]\in \IC[/mm]


Ich nehme an es heißt [mm] b_n \in \IC [/mm]


Die Reihe $ [mm] \summe_{n=0}^{\infty} (z^2 [/mm] $ + $ [mm] b_n )z^n [/mm] $  konvergiert [mm] \gdw [/mm]

Die Reihen  $ [mm] \summe_{n=0}^{\infty}z^{n+2} [/mm] $ und  $ [mm] \summe_{n=0}^{\infty}b_n z^n [/mm] $ konvergieren.

Die Reihe $ [mm] \summe_{n=0}^{\infty}z^{n+2} [/mm] $ ist die geometrische Reihe, konvergiert also für $|z|<1$.

Weiter sei [mm] \rho [/mm] = lim sup [mm] \wurzel[n]{|b_n|} [/mm]

Fall 1: [mm] \rho [/mm] = [mm] \infty. [/mm] Dann konvergiert [mm] \summe_{n=0}^{\infty}b_n z^n [/mm]  nur für z = 0, damit konvergiert $ [mm] \summe_{n=0}^{\infty} (z^2 [/mm] $ + $ [mm] b_n )z^n [/mm] $ ebenfalls nur für z = 0.


Fall 2: [mm] \rho [/mm] = 0. Dann konvergiert [mm] \summe_{n=0}^{\infty}b_n z^n [/mm]  in jedem z, also konvergiert $ [mm] \summe_{n=0}^{\infty} (z^2 [/mm] $ + $ [mm] b_n )z^n [/mm] $ für |z|<1.


Fall 3: 0< [mm] \rho [/mm] < [mm] \infty. [/mm] Dann konvergiert [mm] \summe_{n=0}^{\infty}b_n z^n [/mm]  für |z| < [mm] \bruch{1}{\rho}, [/mm] also konvergiert $ [mm] \summe_{n=0}^{\infty} (z^2 [/mm] $ + $ [mm] b_n )z^n [/mm] $ für


    |z| < min {  1, [mm] \bruch{1}{\rho} [/mm]  }


FRED

>  
> Hallo,
> ich kriege diese Aufgabe nicht hin. Ich weiß nicht einmal,
> wie ich anfangen soll. Wenn ich die Klammer
> ausmultipliziere, kann ich ja die Summen nicht
> auseinanderziehen, das ginge ja nur innerhalb des Radius,
> den ich aber erst bestimmen muss.
> Kann mir bitte jemand einen Tipp geben, wie ich da rangehen
> soll?
>  Danke schonmal!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Konvergenzradius bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Mo 19.01.2009
Autor: MatheSpass

Ach Mist, das tut mir leid, es heißt nicht [mm] b_n [/mm] sondern [mm] b^n [/mm]. Das ist mein erster Versuch in Tex... Aber trotzdem vielen Dank, dadurch müsste das ja mit dem Wurzelkriterium machbar sein.
Das hat mir sehr geholfen!
Ich editiere das oben mal zum richtigen hin.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]