www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius berechnen
Konvergenzradius berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius berechnen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:23 Do 05.07.2007
Autor: macio

Aufgabe
Berechnen Sie den Konvergenzradius der Potenzreihe:
[mm] \summe_{n=1}^{\infty} \bruch{n^n}{(2n+1)!} z^n [/mm]

Hallo, ich komme nich weiter! Soweit bin ich gekommen:
Quotientenkriterium für Potenzreihen angewendet:
[mm] \bruch{n^n}{(2n+1)!} z^n [/mm] * [mm] \bruch{(2n+3)!}{(n+1)^n^+^1} [/mm]
[mm] =\bruch{n^n (2n+3) (2n+2) (2n+1)!}{(2n+1)! (n+1) (n+1)^n} [/mm]

Ich komme nicht drauf [mm] n^n [/mm] wegzukürzen, vll kann mir jemand dabei helfen?

        
Bezug
Konvergenzradius berechnen: Querverweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Do 05.07.2007
Autor: Loddar

Hallo macio!


[aeh] Ich dachte, wir hätten diese Frage bereits hier geklärt ...


Gruß
Loddar


Bezug
                
Bezug
Konvergenzradius berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 Do 05.07.2007
Autor: macio

Ja tut mir leid, ist mir erst späte eingefallen, als ich das reingestellt hab!
naja das was wir davor gemacht haben war nicht ganz korrekt denn es muss ja eigentlich heissen:

[mm] \bruch{(2n+3) (2n+2)} {\red{(n+1)}(1+\bruch{1}{n})^n} [/mm]

Da ich ja am Anfang ein Schreibfehler hatte!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]