www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konvergenzradius Reihe
Konvergenzradius Reihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Mo 21.03.2011
Autor: rhenser123

Aufgabe
Bestimme den Konvergenzradius der Reihe [mm] \summe_{n=0}^{\infty}\vektor{kn\\n}z^n. [/mm]

Hallo!

Mir wurde obige Aufgabe gestellt. Ich denke, dass der Radius irgendwie mithilfe des Quotientenkriteriums zu bestimmen ist. Zuerst habe ich versucht, den Binomialkoeffizienten umzuformen, in der Hoffnung, dass sich beim entsprechenden Quotienten möglichst viel wegkürzt. Ich bin allerdings mit der Umformung hoffnungslos überfordert und würde mich über Hilfe freuen...

Viele Grüße!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzradius Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Mo 21.03.2011
Autor: kamaleonti

Hallo rhenser123,
[willkommenmr]

> Bestimme den Konvergenzradius der Reihe
> [mm]\summe_{n=0}^{\infty}\vektor{kn\\n}z^n.[/mm]
>  Hallo!
>  
> Mir wurde obige Aufgabe gestellt. Ich denke, dass der
> Radius irgendwie mithilfe des Quotientenkriteriums zu
> bestimmen ist.
> Zuerst habe ich versucht, den
> Binomialkoeffizienten umzuformen, in der Hoffnung, dass
> sich beim entsprechenden Quotienten möglichst viel
> wegkürzt. Ich bin allerdings mit der Umformung
> hoffnungslos überfordert und würde mich über Hilfe freuen...

Trotzdem könntest du deine bisherigen Ergebnisse posten.

Schauen wir uns den Binomikoeffizienten mal an:
[mm] \vektor{nk\\n}=\frac{(nk)!}{[n(k-1)]!n!}=\frac{(nk)*(nk-1)*\ldots*(nk-n+1)}{n!}. [/mm] Auch weiter lässt sich bei den Fakultäten bei der Anwendung der Quotientenformel [mm] $r=\lim_{n\rightarrow\infty} \left| \frac{a_{n}}{a_{n+1}} \right|$ [/mm] viel wegkürzen.

Hier ein anderer Thread zur Inspiration.

>  
> Viele Grüße!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]