www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius Potenzreihe
Konvergenzradius Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Di 05.02.2008
Autor: SGEChabo

Aufgabe
Man bestimme den Konvergenzradius der Potenzreihe [mm] \summe_{n=0}^{\infty}n!*x^n [/mm]  

so nun  kann den Konvergenzradius ja mit

[mm] \bruch{1}{r} [/mm]  

[mm] r:=\limsup_{n \to \infty}\wurzel[n]{n!} [/mm]
  
berechnen. Aber wie geht es weiter??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzradius Potenzreihe: anderes Kriterium
Status: (Antwort) fertig Status 
Datum: 18:52 Di 05.02.2008
Autor: Loddar

Hallo SGeChabo!


Verwende hier besser das Kriterium: $r \ := \ [mm] \limsup_{n\rightarrow\infty}\left|\bruch{a_n}{a_{n+1}}\right|$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Konvergenzradius Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Di 05.02.2008
Autor: SGEChabo

okay das hab ich auch schonmal gesehen. Aber woher weiss ich wann ich welches Kriterium benutzen kann bzw. muss??

Gruß SGEChabo

Bezug
                        
Bezug
Konvergenzradius Potenzreihe: probieren + Erfahrung
Status: (Antwort) fertig Status 
Datum: 18:59 Di 05.02.2008
Autor: Loddar

Hallo SGeChabo!


Das ist etwas Erfahrung und machmal auch Probieren. In diesem Falle kürzt sich durch die Fakultät halt das meiste weg.


Gruß
Loddar


Bezug
                
Bezug
Konvergenzradius Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Di 05.02.2008
Autor: SGEChabo

Aufgabe
[mm] \begin{Bmatrix} \bruch{n!}{n!(n+1)} \end{Bmatrix} [/mm]

Da kürzte sich dnan aj das n! jeweils weg und dann hab ich:

[mm] \bruch{1}{n+1} [/mm]

Stimmt das so??

Gruß
SGEChabo


PS: Die Klammern oben sollen Betragsstriche sein, die cih unten auch vergessen habe ;-)

Bezug
                        
Bezug
Konvergenzradius Potenzreihe: richtig
Status: (Antwort) fertig Status 
Datum: 19:11 Di 05.02.2008
Autor: Loddar

Hallo SGeChabo!


[ok] Stimmt soweit. Nun die entsprechendne Grenzwertbetrachtung ...


Gruß
Loddar


Bezug
                                
Bezug
Konvergenzradius Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Di 05.02.2008
Autor: SGEChabo

Naja da n ja gegen unendlich geht wird der Grenzwert wohl o sein. Aber reicht das wenn cih das so in der Klausur schreibe?? Das kommt mir so unvollständig vor!? So unmathematisch, hahaha ;-)

Gruß

Bezug
                                        
Bezug
Konvergenzradius Potenzreihe: reicht schon ...
Status: (Antwort) fertig Status 
Datum: 19:18 Di 05.02.2008
Autor: Loddar

Hallo SGeChabo!


Wenn Du gleich die richtige Formel für den Konvergenzradius aufschreibst und entsprechend einsetzt, reicht das aus!


Gruß
Loddar


Bezug
                                                
Bezug
Konvergenzradius Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 05.02.2008
Autor: SGEChabo

Alles klar. Vielen Dank für die Hilfe

Wnsche noch nen schönen Abend!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]