www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius Potenzreihe
Konvergenzradius Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Mi 16.04.2014
Autor: Petrit

Aufgabe
Bestimmen Sie den Konvergenzradius folgender komplexer Potenzreihe:

[mm] \summe_{k=0}^{\infty}\bruch{z^{k}}{(1+i)^{k}} [/mm]

Hallo!

Ich habe mal wieder ein Verständnisproblem.
Und zwar soll ich hierfür den Konvergenzradius bestimmen. Das habe ich auch wie folgt gemacht:
R= [mm] \bruch{1}{\limsup_{k\rightarrow\infty}\wurzel[k]{|a_{k}|}} [/mm] = [mm] \bruch{1}{\limsup_{k\rightarrow\infty}\wurzel[k]{|\bruch{1}{(1+i)^k}|}} [/mm] = (1+i).
Wenn ich nun ausreche, für welche z meine Potenzreihe konvergiert, bekomme ich
|z| < (1+i) [mm] \gdw |z|^2 [/mm] < [mm] (1+i)^2=2i, [/mm] also |z| < [mm] \wurzel{2i}. [/mm]
So weit, so gut. Gebe ich dies nun aber in WolframAlpha ein, so bekomme ich als Lösung {|z| < [mm] \wurzel{2}}, [/mm] also ohne das i.
Jetzt meine Frage. Könnte mir jemand erklären, was es damit auf sich hat? Kann man das i einfach weglassen? HAt das andere Gründe? Oder ist es gar falsch?

Ich hoffe, mir kann das vielleicht jemand erklären.

Viele Grüße, Petrit!

        
Bezug
Konvergenzradius Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mi 16.04.2014
Autor: Richie1401

Hi,

> Bestimmen Sie den Konvergenzradius folgender komplexer
> Potenzreihe:
>  
> [mm]\summe_{k=0}^{\infty}\bruch{z^{k}}{(1+i)^{k}}[/mm]
>  Hallo!
>  
> Ich habe mal wieder ein Verständnisproblem.
>  Und zwar soll ich hierfür den Konvergenzradius bestimmen.
> Das habe ich auch wie folgt gemacht:
>  R=
> [mm]\bruch{1}{\limsup_{k\rightarrow\infty}\wurzel[k]{|a_{k}|}}[/mm]
> =
> [mm]\bruch{1}{\limsup_{k\rightarrow\infty}\wurzel[k]{|\bruch{1}{(1+i)^k}|}}[/mm]
> = (1+i).
>  Wenn ich nun ausreche, für welche z meine Potenzreihe
> konvergiert, bekomme ich
>  |z| < (1+i) [mm]\gdw |z|^2[/mm] < [mm](1+i)^2=2i,[/mm] also |z| <
> [mm]\wurzel{2i}.[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  So weit, so gut. Gebe ich dies nun aber in WolframAlpha
> ein, so bekomme ich als Lösung {|z| < [mm]\wurzel{2}},[/mm] also
> ohne das i.
> Jetzt meine Frage. Könnte mir jemand erklären, was es
> damit auf sich hat? Kann man das i einfach weglassen? HAt
> das andere Gründe? Oder ist es gar falsch?

nein, also weggelassen wird hier nix. Da bräuchten wir ja gar keine Mathematik, sondern streichen immer einfach etwas raus, was uns nicht passt.

Der Fehler ist doch hier: |z|<(1+i), auf [mm] \IC [/mm] gibt es keine ordnungsrelation. Das macht also gar keinen Sinn, was dort steht.

Der Konvergenzradius ist eine reelle Zahl.

>  
> Ich hoffe, mir kann das vielleicht jemand erklären.
>  
> Viele Grüße, Petrit!


Bezug
                
Bezug
Konvergenzradius Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 Mi 16.04.2014
Autor: Petrit

Erstmal danke.

Ich verstehe nun, dass es keine Ordnungsrelation in [mm] \IC [/mm] gibt, da bin ich nur einfach nicht drauf gekommen.
Aber wieso nehme ich dann nicht gleich die 1, sondern quadriere erst und nehme dann die 2 als meine reelle Zahl?

Gruß Petrit!

Bezug
                        
Bezug
Konvergenzradius Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mi 16.04.2014
Autor: Richie1401

Hey,

ja also bedenke halt, dass schon bei der Berechnung von R ein Problem auftaucht. Also sind wir uns einig, dass wir [mm] R=\sqrt{2} [/mm] haben?

Gut, nun suchen wir also alle [mm] z\in\IC [/mm] mit [mm] |z|<\sqrt{2}. [/mm]

Warum wird nun quadriert? Weil |z| schwer zu handhaben zu ist, denn [mm] |z|=\sqrt{a^2+b^2}, [/mm] und die Wurzel stört für weitere berechnungen.

Wobei sich mir die Frage stellt, warum nun diese Umfornung macht. Denn im Grunde ist die Aufgabe gelöst.

Bezug
                                
Bezug
Konvergenzradius Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Mi 16.04.2014
Autor: Petrit

Hi!

Ja, natürlich. Stimmt ja.

Vielen Dank. Ich habe einfach zu umständlich gedacht.

Gruß, Petrit!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]