www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Do 22.01.2009
Autor: NightmareVirus

Aufgabe
Es sei [mm] \summe_{n=0}^{\infty} a_n x^n [/mm] eine Potenzreihe mit Konvergenzradius R [mm] \in (0,\infty). [/mm] Bestimmen Sie den Konvergenzradius der folgenden Potenzreihe:
[mm] \summe_{n=0}^{\infty} a_n x^{n^2} [/mm]  

Meine Idee:

Erst einmal schaue ich wie die Summe denn aussieht:

[mm] \summe_{n=0}^{\infty} a_n x^{n^2} [/mm]
= [mm] a_0 [/mm] + a_1x + [mm] 0*x^2 [/mm] + [mm] 0*x^3 [/mm] + [mm] a_2*x^4 [/mm] + [mm] 0*x^5 [/mm] + [mm] 0*x^6 [/mm]

= [mm] \summe_{n=0}^{\infty} b_i x^{n} [/mm] , mit [mm] b_i =\begin{cases} a_{\wurzel{i}} & \mbox{falls } \exists n \in \IN \mbox{ mit } i = n*n \\ 0, & \mbox{sonst}\end{cases} [/mm]

Jetzt versuche ich mit der Wurzelvariante den Konvergenzradius R' zu bestimmen.



[mm] \limes_{i\rightarrow\infty}sup \wurzel[i]{|b_i|} [/mm]

Da [mm] |a_n| \ge [/mm] 0 reicht es die [mm] b_i [/mm] zu betrachten für die gilt i = n*n
also die [mm] b_i [/mm] für die gilt:
[mm] b_i [/mm] = [mm] a_{\wurzel{i}} [/mm] = [mm] a_{\wurzel{n*n}} [/mm]

Also:

[mm] \limes_{i\rightarrow\infty}sup \wurzel[i]{|b_i|} [/mm]
= [mm] \limes_{n\rightarrow\infty}sup \wurzel[n*n]{|a_{n*n}|} [/mm]
= [mm] \limes_{n\rightarrow\infty}sup (|a_{\wurzel{n*n}}|)^{\bruch{1}{n*n}} [/mm]

Für n gegen unendlich geht der exponent gegen 1, [mm] \limes [/mm] sup von [mm] a_{n*n} [/mm] =  [mm] \limes [/mm] sup [mm] a_{n} [/mm]

Also R' = [mm] R^1 [/mm] = R

Beide Reihen haben den gleichen Konvergenzradius.


Funktioniert das so? Hab sonst echt keine Idee wie ich sosnt an die Aufgabe gehen soll.



        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Fr 23.01.2009
Autor: Leopold_Gast

Deine Überlegungen können nicht stimmen. Betrachte die Reihe [mm]\sum_{n=0}^{\infty} \frac{1}{2^n} \, x^n[/mm]. Sie hat offenbar den Konvergenzradius [mm]R=2[/mm]. Und auf die Reihe [mm]\sum_{n=0}^{\infty} \frac{1}{2^n} \, x^{n^2}[/mm] wenden wir für [mm]x \neq 0[/mm] direkt das Quotientenkriterium an (die Konvergenz bei [mm]x=0[/mm] ist sowieso klar). Mit [mm]b_n = \frac{x^{n^2}}{2^n}[/mm] folgt:

[mm]\frac{\left| b_{n+1} \right|}{\left| b_n \right|} = \frac{1}{2} \cdot |x|^{2n+1}[/mm]

Ist nun [mm]|x|<1[/mm], so strebt der letzte Ausdruck für  [mm]n \to \infty[/mm] gegen 0. Nach dem Quotientenkriterium konvergiert die Reihe für diesen Fall. Ist dagegen [mm]|x|>1[/mm], so strebt der Ausdruck gegen [mm]\infty[/mm]. Für solche [mm]x[/mm] haben wir also Divergenz. Damit muß [mm]R'=1[/mm] der Konvergenzradius sein.

Überlege einmal, inwiefern sich diese Argumentation verallgemeinern läßt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]