www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Konvergenzradius
Konvergenzradius < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 08:43 Do 10.05.2007
Autor: blinktea

Aufgabe
Die Potenzreihe [mm] f(z)=\summe_{n=0}^{\infty} a_nz^n [/mm] habe den Konvergenzradius R>1, und es gebe ein [mm] k\in \IN_o [/mm] mit [mm] |a_k|=1. [/mm] Zeige: Es existiert ein [mm] z_o \in S^1 [/mm] mit [mm] |f/z_o)|\ge1. [/mm]

in einem satz habe ich folgendes gefunden:

[mm] a_r^k=1/2 \pi \integral_{0}^{2\pi}{f(a+re^{it})e^{-ikt}\ dt} [/mm]
für alle K=0,1,2...Speziell für k=0 erhält man daraus wegen [mm] a_0=f(a) [/mm] die folgende 'Mittelpunktseigenschaft einer analytischen Funktion':
[mm] f(a)=1/2\pi \integral_{0}^{2\pi}{f(a+re^{it})\ dt}. [/mm] Bezeichnet man für beliebiges r mit 0<r<R das Maximum, welches die stetige Funktion |f| auf der Kreislinie |z-a|=r annimt, mit [mm] M=M_r=max{|f(z)|;|z-a|=r}, [/mm] so gelten für alle k=0,1,2...'Cauchy Abschätzungsformlen':
[mm] |a_k| \le M/r^k [/mm]

also diesen satz kann ich doch bestimmt irgendwie anwenden, vielleicht ist es auch total offensichtlich, leider sehe ich das nicht. deswegen wäre ich sehr dankbar wenn mir jemand sagen könnte wie ich das mit diesem satz angehen könnte...:)

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Do 10.05.2007
Autor: felixf

Hallo!

> Die Potenzreihe [mm]f(z)=\summe_{n=0}^{\infty} a_nz^n[/mm] habe den
> Konvergenzradius R>1, und es gebe ein [mm]k\in \IN_o[/mm] mit
> [mm]|a_k|=1.[/mm] Zeige: Es existiert ein [mm]z_o \in S^1[/mm] mit
> [mm]|f/z_o)|\ge1.[/mm]

>

>  in einem satz habe ich folgendes gefunden:
>  
> [mm]a_r^k=1/2 \pi \integral_{0}^{2\pi}{f(a+re^{it})e^{-ikt}\ dt}[/mm]
>  
> für alle K=0,1,2...

du meinst [mm] $a_k [/mm] = [mm] \frac{1}{2 \pi i} \int_0^{2\pi} [/mm] f(a + r [mm] e^{it}) e^{-ikt} \; [/mm] dt$, oder? Das ist die Cauchysche Integralformel. Und damit kommst du auch schon recht weit:

Damit ist naemlich $1 = [mm] |a_k| [/mm] = [mm] \frac{1}{2 \pi} \left| \int_0^{2\pi} f(a + r e^{it}) e^{-ikt} \; dt \right| \ge \frac{1}{2 \pi} \cdot [/mm] 2 [mm] \pi \sup_{t \in [0, 2 \pi]} [/mm] |f(a + r [mm] e^{i t}) e^{-i k t}| [/mm] = [mm] \sup_{t \in [0, 2 \pi]} [/mm] |f(a + r [mm] e^{i t})|$. [/mm]

Und jetzt bist du im Prinzip fertig...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]