www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Prüfungsvorbereitung
Status: (Frage) beantwortet Status 
Datum: 13:49 Mi 19.07.2006
Autor: Sandeu

Aufgabe
Bestimme den Konvergenzradius der Potenzreihe P(z) =  [mm] \summe_{n=0}^{\infty} \bruch{ 3^{n}}{-4} z^{2n}, [/mm] z [mm] \in \IC [/mm]

Hallo,

ich habe den Konvergenzradius bestimmt, und komme auf  [mm] \bruch{1}{12}. [/mm]

In der Übung wurde jedoch gesagt, das hier  [mm] \bruch{1}{3} [/mm] rauskommen soll.

Könnte das bitte jemand durchrechnen, damit ich weiß, ob ich die Aufgabe lieber doch nochmal bearbeiten soll, oder ob die Übungstante sich mal wieder geirrt hat (wäre nicht das erste mal und ich kann bei mir keinene Fehler finden).
Vielen Dank

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Mi 19.07.2006
Autor: banachella

Hallo!

Ein bisschen mehr könntest du ruhig angeben! Wie ist denn dein Rechenweg? Dann könnten wir uns mal auf die Fehlersuche begeben.
Nach meiner Rechnung liegt ihr nämlich beide falsch: Ich komme auf den Konvergenzradius [mm] $\bruch 1{\sqrt 3}$. [/mm] Vergiss nicht, dass hier [mm] $z^{2n}$ [/mm] steht! Und [mm] $\sqrt[n]{4}\to [/mm] 1$ mit [mm] $n\to\infty$... [/mm]
Kommst du jetzt weiter?

Gruß, banachella

Bezug
                
Bezug
Konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Mi 19.07.2006
Autor: Sandeu

Hallo,

sorry... ich werde es mir das nächste Mal zu Herzen nehmen... Du hast ja recht.

Vielen Dank, hab jetzt die richtige Lösung, dank deiner Hilfe, gefunden.

Vielen Dank und noch einen schönen Tag

Bezug
                
Bezug
Konvergenzradius: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:32 Sa 05.08.2006
Autor: Hola

hallo! ich wollte nur nachfragen wie das z hoch 2n ins Gewicht fällt!? Den Konvergenzradius kann ich doch einfach aus a(n) mit quot oder Wurzelkrit berechnen.. Vielen Dank

Vergiss

> nicht, dass hier [mm]z^{2n}[/mm] steht! Und [mm]\sqrt[n]{4}\to 1[/mm] mit
> [mm]n\to\infty[/mm]...

Bezug
                        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 So 06.08.2006
Autor: SirJective

$P(z) =  [mm] \summe_{n=0}^{\infty} \bruch{ 3^{n}}{-4} z^{2n}, [/mm] z [mm] \in \IC$ [/mm]

> hallo! ich wollte nur nachfragen wie das z hoch 2n ins
> Gewicht fällt!? Den Konvergenzradius kann ich doch einfach
> aus a(n) mit quot oder Wurzelkrit berechnen.. Vielen Dank

Was ist denn a(n)?

a(n) ist per Definition der Koeffizient vor der Potenz [mm] z^n. [/mm]
Für ungerade n ist a(n) = 0, weil keine ungeraden z-Potenzen auftreten.
Und was ist a(n) für gerade n? Das kriegst du selbst raus. :)

Gruß,
SirJective


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]