www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradien von Potenzre
Konvergenzradien von Potenzre < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradien von Potenzre: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 13:52 Sa 22.04.2006
Autor: Dally

Aufgabe
Berechnen Sie die Konvergenzradien der folgenden Potenzreihen:

(a)  [mm] \summe_{k=0}^{ \infty} \bruch{k!}{2^{k^{2}}} x^{k} [/mm]

(b) [mm] \summe_{k=0}^{\infty} k^{5}5^{k}x^{k} [/mm]



  

Hi,

ich habe das mal kurz durchgerechnet, bin mir aber wie so oft nicht sicher ob das so korrekt ist. Wenn ich einen Fehler reingebaut habe laut schreihen.
Und in dem Fall wäre ich natürlich für einen Tip dankbar wie ich's besser machen kann.


a) [mm] \summe_{k=0}^{ \infty} \bruch{k!}{2^{k^{2}}} x^{k} [/mm]

    Konvergenzradius:


r =  [mm] \limes_{k\rightarrow\infty} \left | \bruch{a_{k}}{a_{k + 1}} \right| [/mm]  ,      [mm] a_{k} [/mm] = [mm] \bruch{k!}{2^{k^{2}}} [/mm]

r = [mm] \bruch{\left(\bruch{k!}{2^{k^{2}}}\right)}{\left(\bruch{(k + 1)!}{2^{(k + 1)^{2}}}\right)} [/mm] = [mm] \bruch{k!}{2^{k^{2}}}*\bruch{2^{(k + 1)^{2}}}{(k + 1)!}= \bruch{k!}{2^{k^{2}}}*\bruch{2^{(k + 1)^{2}}}{k!*(k + 1)} [/mm]

= [mm] \bruch{1}{2^{k^{2}}}*\bruch{2^{(k + 1)^{2}}}{(k + 1)} [/mm] = [mm] \left( \bruch{2^{k + 1}}{2^{k}}\right)^{2}*\bruch{1}{(k + 1)} [/mm] = [mm] \left(\bruch{2^{k}*2}{2^{k}}\right)^{2}*\bruch{1}{k + 1} [/mm] = [mm] \bruch{4}{k + 1} [/mm]

= 0 für k gegen unendlich.

Konvergiert nur für x = 0.


b) [mm] \summe_{k=0}^{\infty} k^{5}5^{k}x^{k} [/mm] ,  [mm] \bruch{1}{\wurzel[k]{a^{k}}} [/mm]



[mm] \bruch{1}{\wurzel[k]{k^{5}}*\wurzel[k]{k^{5}}} [/mm] =  [mm] \bruch{1}{\left(k^{5} \right)^\bruch{1}{k}*5} [/mm] =  [mm] \bruch{1}{5} [/mm] für k gegen unendlich.



Mfg und vielen Danke schonmal

Dally



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenzradien von Potenzre: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 14:03 Sa 22.04.2006
Autor: Loddar

Hallo Dally!


Aufgabe a.)

> r = [mm]\bruch{1}{2^{k^{2}}}*\bruch{2^{(k + 1)^{2}}}{(k + 1)}[/mm]

Bis hierher  stimmt's, dann wendest Du ein vermeintliches MBPotenzgesetz falsch an.

[mm] $2^{k^2} [/mm] \ [mm] \red{\not=} [/mm] \ [mm] \left( \ 2^k \ \right)^2$ [/mm]


Diese Zweierpotenzen musst Du folgendermaßen zusammenfassen:

[mm] $\bruch{2^{(k+1)^2}}{2^{k^2}} [/mm] \ = \ [mm] \bruch{2^{k^2+2k+1}}{2^{k^2}} [/mm] \ = \ [mm] 2^{k^2+2k+1-k^2} [/mm] \ = \ [mm] 2^{2k+1}$ [/mm]



Gruß
Loddar


Bezug
        
Bezug
Konvergenzradien von Potenzre: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 14:04 Sa 22.04.2006
Autor: Loddar

Hallo Dally!


Aufgabe b.)

> [mm]\bruch{1}{\wurzel[k]{k^{5}}*\wurzel[k]{k^{5}}}[/mm] =  [mm]\bruch{1}{\left(k^{5} \right)^\bruch{1}{k}*5}[/mm] =  [mm]\bruch{1}{5}[/mm] für k gegen unendlich.

Abgesehen von dem kleinen Tippfehler im ersten Bruch [mm] $\bruch{1}{\wurzel[k]{k^5}*\wurzel[k]{\red{5^k}}}$ [/mm] stimmt es .

Nun musst Du allerdings noch die beiden Ränder [mm] $r_1 [/mm] \ = \ [mm] -\bruch{1}{5}$ [/mm] sowie [mm] $r_2 [/mm] \ = \ [mm] +\bruch{1}{5}$ [/mm] noch separat betrachten, da für $x \ [mm] \red{=} [/mm] \ r$ zunächst keine Aussage zur Konvergenz möglich ist.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]