www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzkriterien
Konvergenzkriterien < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzkriterien: Unklar
Status: (Frage) beantwortet Status 
Datum: 16:53 Mi 14.05.2008
Autor: Surfer

Hallo und zwar habe ich eine Aufgabe bei der entschieden werden soll welche der angegebenen Reihen konvergiert oder divergiert und mit welchem Kriterium also entweder Wurzel-/Quotienten- /Leibniz- oder keines mit dessen die Konvergenz bzw.Divergenz am besten Nachgewisen werden kann, es darf aber nur eines angekreuzt werden:

a) [mm] \summe_{k=1}^{\infty} (-1)^{k} [/mm] * [mm] \bruch{1}{(-2)^{k}} [/mm]
b) [mm] \summe_{k=1}^{\infty} \bruch{2+(-1)^{k}}{2^{k}} [/mm]
c) [mm] \summe_{k=1}^{\infty} \bruch{1}{3k-2} [/mm]

das sind die drei Reihen, die angegeben sind und bei denen soll man angeben ob sie konvergieren oder nicht und mit welchem Kritrium dies am besten nachzuweisen ist!

Ich verstehe jedoch nicht ganz woran ich erkenne, welches Kriterium ich am ehesten anwenden soll! Hab schon in meinem Schulbuch gelesen und bei Wikipedia, jedoch wird dort kein Beispiel genannt! Also wäre dankbar um eine Erklärung vielleicht sogar direkt am Beispiel auf was hier zu schauen ist!!

lg Surfer

        
Bezug
Konvergenzkriterien: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mi 14.05.2008
Autor: schachuzipus

Hallo Surfer,

> Hallo und zwar habe ich eine Aufgabe bei der entschieden
> werden soll welche der angegebenen Reihen konvergiert oder
> divergiert und mit welchem Kriterium also entweder
> Wurzel-/Quotienten- /Leibniz- oder keines mit dessen die
> Konvergenz bzw.Divergenz am besten Nachgewisen werden kann,
> es darf aber nur eines angekreuzt werden:
>  
> a) [mm]\summe_{k=1}^{\infty} (-1)^{k}[/mm] * [mm]\bruch{1}{(-2)^{k}}[/mm]
>  b) [mm]\summe_{k=1}^{\infty} \bruch{2+(-1)^{k}}{2^{k}}[/mm]
>  c)
> [mm]\summe_{k=1}^{\infty} \bruch{1}{3k-2}[/mm]
>  
> das sind die drei Reihen, die angegeben sind und bei denen
> soll man angeben ob sie konvergieren oder nicht und mit
> welchem Kritrium dies am besten nachzuweisen ist!

Tja, was heißt "am besten", das ist oft Sache des Probierens, das Wurzelkriterium ist etwas schärfer als das Quotientenkriterium.

Bei der (a) hast du ja im Zäher und Nenner "irgendwas hoch k" stehen, da würde ich das Wurzelkriterium ansetzen, es geht aber genauso gut das QK, das ist hier beliebig.

bei der (b) hast du im Zähler der Folge der Reihenglieder wegen der [mm] (-1)^k [/mm] eine alternierende Folge

Es ist dort [mm] $a_k=\frac{2+(-1)^k}{2^k}=\begin{cases} \frac{3}{2^k}, & \mbox{für } k \mbox{ gerade} \\ \frac{1}{2^k}, & \mbox{für } k \mbox{ ungerade} \end{cases}$ [/mm]

Hier bietet sich unbedingt das Wurzelkriterium an, berechne [mm] $\limsup\limits_{k\to\infty}\sqrt[k]{|a_k|}$, [/mm] also den größten Häufungswert der Folge [mm] $\left(\sqrt[k]{|a_k|}\right)_{k\in\IN}$ [/mm]

bei der (c) ist die Reihe ja von der "Größenordnung" der harmonischen Reihe (oder eines Vielfachen derselben), also ist der erste Gedanke: "Das Biest ist divergent!"

Hier würde ich also das Vergleichs- oder Majorantenkriterium ansetzen und versuchen, mit der harmonischen Reihe eine divergente Minorante zu finden.


>  
> Ich verstehe jedoch nicht ganz woran ich erkenne, welches
> Kriterium ich am ehesten anwenden soll! Hab schon in meinem
> Schulbuch gelesen und bei Wikipedia, jedoch wird dort kein
> Beispiel genannt! Also wäre dankbar um eine Erklärung
> vielleicht sogar direkt am Beispiel auf was hier zu schauen
> ist!!
>  
> lg Surfer


Ich hoffe, du kommst mit den Tipps weiter


Lieben Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]