www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzbereich
Konvergenzbereich < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:25 Mi 02.09.2009
Autor: YesWeCan

Aufgabe
Bestimme für welche x [mm] \in\IR [/mm] die folgenden Potenzreihen konvergieren.


[mm] \summe_{k=0}^{\infty}\bruch{(3x-1)k}{15^k} [/mm]

Hi,

der Konv.Rad ist 15 das ist klar, nun für welche x konv.  dir Reihe?
In der Lösung vom Prof steht folgendes:
     man ersetzt den Ausdruck mit x durch y, also y=3x-1
     der der Konv. rad von 15 gilt für y! folgendes steht da: -15<y<15
     nun setzt man für y   3x-1 ein --->auflösen lifert [mm] \bruch{16}{3}, [/mm] folgendes
     steht dort: [mm] x>-\bruch{14}{3}x<\bruch{16}{3} [/mm]
    
     Endlösung:K =]− [mm] \bruch{14}{3} [/mm] , [mm] \bruch{16}{3}[ [/mm]

Woher kommen -14/3?    und ganz interessant, dass die Randpunkte nicht untersucht werden, sondern ohne Überprüfung aus der Konv.bereich ausgeschlossen werden?!!!!

Ist das ein Fehler in Lösung, ist nähmilch schon mal vorgekommen, oder ist mir da was entgangen?

an dieser Stelle möchte ich fragen, ob man immer den Ausdruck mit x durch y ersetzen muss, und dann den errechneten Konv.rad in diesen Ausdruck einsetzt und dann "anpasst".

Danke euch im Voraus
Gruss
Alex



        
Bezug
Konvergenzbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Mi 02.09.2009
Autor: steppenhahn

Hallo!

> der Konv.Rad ist 15 das ist klar, nun für welche x konv.  
> dir Reihe?

Der Konvergenzradius von 15 ist klar... Glaub ich nicht. Denn zum Konvergenzradius gehört auch immer eine Variable, für welche der Radius gilt. Und x ist es nicht :-)

>  In der Lösung vom Prof steht folgendes:
>       man ersetzt den Ausdruck mit x durch y, also y=3x-1

Als erstes versucht man, wieder einen "bekannten Fall" zu produzieren. Das machen wir einfach, indem wir y = 3x-1 substituieren. Dann haben wir wieder eine ganz normale Potenzreihe.

>       der der Konv. rad von 15 gilt für y! folgendes steht
> da: -15<y<15

Und wenn wir nun dastehen haben:

[mm] $\summe_{k=0}^{\infty}\bruch{(3x-1)^k}{15^k} [/mm] = [mm] \summe_{k=0}^{\infty}\bruch{y^k}{15^k}$ [/mm]

ist die Aussage des Professors oben denk ich offensichtlich.
Nun wollen wir aber den Konvergenzradius für x bestimmen, nicht für y. Also müssen wir jetzt, da wir den Konvergenzradius für y kennen, wieder nach x rücksubstituieren:

$y = 3x-1 [mm] \gdw [/mm] x = [mm] \frac{y+1}{3}$ [/mm]

Genau dieser Prozedur müssen jetzt auch die Grenzen unterzogen werden:

[mm] $y_{Grenze1} [/mm] = -15 [mm] \Rightarrow x_{Grenze1} [/mm] = [mm] \frac{-15+1}{3} [/mm] = [mm] -\frac{14}{3}$ [/mm]

Analog die andere Grenze. Und so kommt man auf die Aussage des Professors:

> steht dort: [mm]x>-\bruch{14}{3}x<\bruch{16}{3}[/mm]
>
> Endlösung:K =]− [mm]\bruch{14}{3}[/mm] , [mm]\bruch{16}{3}[[/mm]

----

> und ganz interessant, dass die
> Randpunkte nicht untersucht werden, sondern ohne
> Überprüfung aus der Konv.bereich ausgeschlossen
> werden?!!!!

Naja, man muss ja in einer Kurzlösung nicht immer alles ausführlich hinschreiben, oder? ;-) Bei Einsetzen der unteren Grenze erhalte ich

[mm] \summe_{k=0}^{\infty})(-1)^{k}, [/mm]

bei der oberen

[mm] \summe_{k=0}^{\infty}1^{k} [/mm]

Beides anerkannte divergente Reihen. Wenn es sich um eine "ganz normale Potenzreihe" handelt, wird das Ergebnis meist so ausfallen.

> an dieser Stelle möchte ich fragen, ob man immer den
> Ausdruck mit x durch y ersetzen muss, und dann den
> errechneten Konv.rad in diesen Ausdruck einsetzt und dann
> "anpasst".

Ja. Du musst dir bekannte Ausdrücke erzeugen, aus welchen du sicher sagen kannst, was der Konvergenzradius ist und dann mit dem "Hilfskonvergenzradius" auf den ursprünglichen schließen, zum Beispiel durch Substitution (Aber Achtung: Man sollte sich das ganze auch immer versuchen ein wenig bildlich vorzustellen, damit man keine Fehler macht). Hier zum Beispiel:

[mm] \summe_{k=0}^{\infty}\frac{x^{2k}}{3^{k}} [/mm]

musst du erst eine Substitution y = [mm] x^{2} [/mm] durchführen.

Grüße,
Stefan.

Bezug
        
Bezug
Konvergenzbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Mi 02.09.2009
Autor: fencheltee


> Bestimme für welche x [mm]\in\IR[/mm] die folgenden Potenzreihen
> konvergieren.
>  
>
> [mm]\summe_{k=0}^{\infty}\bruch{(3x-1)k}{15^k}[/mm]
>  Hi,
>  
> der Konv.Rad ist 15 das ist klar, nun für welche x konv.  
> dir Reihe?
>  In der Lösung vom Prof steht folgendes:
>       man ersetzt den Ausdruck mit x durch y, also y=3x-1
>       der der Konv. rad von 15 gilt für y! folgendes steht
> da: -15<y<15
>       nun setzt man für y   3x-1 ein --->auflösen lifert
> [mm]\bruch{16}{3},[/mm] folgendes
> steht dort: [mm]x>-\bruch{14}{3}x<\bruch{16}{3}[/mm]
>
> Endlösung:K =]− [mm]\bruch{14}{3}[/mm] , [mm]\bruch{16}{3}[[/mm]
>  
> Woher kommen -14/3?    und ganz interessant, dass die
> Randpunkte nicht untersucht werden, sondern ohne
> Überprüfung aus der Konv.bereich ausgeschlossen
> werden?!!!!
>  
> Ist das ein Fehler in Lösung, ist nähmilch schon mal
> vorgekommen, oder ist mir da was entgangen?
>  
> an dieser Stelle möchte ich fragen, ob man immer den
> Ausdruck mit x durch y ersetzen muss, und dann den
> errechneten Konv.rad in diesen Ausdruck einsetzt und dann
> "anpasst".
>  
> Danke euch im Voraus
>  Gruss
>  Alex
>  
>  

interessant, vom substituieren bei reihen hab ich auch noch nie gehört.. warum geht man hier nicht über die geometrische reihe? bei der ist ja klar, dass man die randpunkte nicht mehr untersuchen muss.


Bezug
                
Bezug
Konvergenzbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Mi 02.09.2009
Autor: schachuzipus

Hallo fencheltee,


> interessant, vom substituieren bei reihen hab ich auch noch
> nie gehört.. warum geht man hier nicht über die
> geometrische reihe? bei der ist ja klar, dass man die
> randpunkte nicht mehr untersuchen muss.
>  

Das kann man hier bei dieser speziellen Form der Reihe natürlich machen.

Aber so viel Zeitersparnis ist das nun auch nicht, schließlich musst du die Betragsungleichung [mm] $\left|\frac{3x-1}{15}\right|<1$ [/mm] mit einer Fallunterscheidung untersuchen.

Aber die Untersuchung der Randpunkte kannst du dir schenken, da hast du recht.

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]