www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Konvergenzberechunung
Konvergenzberechunung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzberechunung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:44 So 20.02.2005
Autor: Skydiver

Hallo.

Ich habe ein kleines Problem bei einer Konvergenzberechnung:
zeigen sie die Konvergenz folgender uneigentlicher Integral:

[mm] \int_{1}^{\infty} e^{-x^2}*\cosh x\, [/mm] dx
[mm] \int_{-1}^{1} [/mm] -2 [mm] \cos [/mm] x [mm] \sin x^2 [/mm] / [mm] x^2\, [/mm] dx

Also ich denke, dass ich das durch

[mm] \lim_{x \to \infty}x^a [/mm] * f(x) = A

berechnen muss und je nach dem Wert von a ist das Integral dann konvergent oder divergent; jedoch komme ich dabei auf keine Lösung, da ich beim zweiten für: a > 0 : 0  
                                  a = 0 : -2
                                  a < 0 : [mm] -\infty [/mm]
erhalte, und dadurch nicht auf Konvergenz bzw. Divergenz schließen kann.
Beim ersten schaffe ich es nicht einmal durch entsprechende Umformungen auf ein Ergebnis der Grenzwertbeziehung zu kommen.
Ich hoffe jemand hat einen kleinen Tip für mich.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenzberechunung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 So 20.02.2005
Autor: andreas

hi

also die regel, die du vorschlägst ist mir nicht ganz klar. es wäre nett, wenn du die nochmal etwas genauer erläutern könntest. ansonsten hätte ich folgenden vorschlag: beim ersten integral kannst du den [mm] $\cosh [/mm] x = [mm] \frac{\textrm{e}^x + \textrm{e}^{-x}}{2}$ [/mm] ersetzen, dann erhälst du

[m] \int_1^\infty \textrm{e}^{-x^2} \cosh x \, \textrm{d}x = \int_1^\infty \textrm{e}^{-x^2} \frac{\textrm{e}^x + \textrm{e}^{-x}}{2} \, \textrm{d}x = \int_1^\infty \left( \frac{\textrm{e}^{-x^2 + x}}{2} + \frac{\textrm{e}^{-x^2 - x}}{2} \right) \, \textrm{d}x [/m]

nun kannst du zeigen, dass das integral über jeden summanden konvergiert und daraus folgern, dass das von dir betrachtete integral konvergiert.

z.b. gilt für $x [mm] \geq [/mm] 1$, dass [mm] $-x^2 [/mm] - x [mm] \leq [/mm] -2x$ und [mm] $-x^2 [/mm] + x [mm] \leq [/mm] -x + 1$ (sofern ich mich nicht verrechnet habe), also (wegen der positivität und der monotonie der [mm] $\textrm{e}$-funktion): [/mm]

[m] 0 \leq \int_1^\infty \frac{\textrm{e}^{-x^2 + x} }{2} \, \textrm{d}x \leq \int_1^\infty \textrm{e}^{-x+1} \, \textrm{d}x [/m] und [m] 0 \leq \int_1^\infty \frac{ \textrm{e}^{-x^2 - x}}{2} \, \textrm{d}x \leq \int_1^\infty \textrm{e}^{-x} \, \textrm{d}x [/m].



bei dem zweiten integral würde ich zeigen, dass die funktion in $x=0$ stetig ergänzbar ist, woraus direkt die konvergenz des integrals folgt (tipp: betrachte [m] \lim_{x \to 0} \frac{\sin x^2}{x^2} [/m] - mit de l'hôspital oder taylor-entwicklung).


probiere mal, ob du damit weiterkommst, sonst melde dich einfach nochmal.


grüße
andreas

Bezug
                
Bezug
Konvergenzberechunung: Anwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 So 20.02.2005
Autor: Skydiver

Das von mir vorgeschlagenen Lösungsverfahren basiert auf dem Wachstumsvergleich mit der Potenzfunktion 1 / [mm] (x-a)^b, [/mm] die am linken Intervallende (a) dasselbe Verhalten aufweist, wie die zu untersuchende Funktion. Von dieser Potenzfunktion weiß man, dass das Integral für b < 1 konvergiert und für b >= 1 divergiert;
ist nun f(x) <= [mm] C/(x-a)^b [/mm] --> dass auch f(x) konvergiert und dass ist dann der Fall wenn [mm] limes_{x \to 0}f(x) [/mm] * [mm] (x-a)^b [/mm] = C ist;
--> exisitert dieser Grenzwert für b < 1 --> Konvergenz
      existiert er für b >= 1 --> Divergenz;

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]