www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Aufgabe 2 Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:57 Do 23.04.2009
Autor: StevieG

Aufgabe
Untersuchen Sie die Reihen auf Konvergenz. Benutzen Sie Dazu die einschlägigen Konvergenzkriterien aus der Vorlesung.

[mm] \summe_{n=1}^{\infty} (-1)^{n}( [/mm] 1- [mm] \bruch{n+1}{n}) [/mm]

-Leibnitz-Kriterium alternierende Reihe


[mm] ...=\summe_{n=1}^{\infty} (-1)^{n}( [/mm] 1- [mm] \bruch{n}{n} [/mm] + [mm] \bruch{1}{n})= [/mm]
[mm] =\summe_{n=1}^{\infty} (-1)^{n}(1-1 +\bruch{1}{n})= \limes_{n\rightarrow\infty}\summe_{n=1}^{\infty} (-1)^{n}(1-1 +\bruch{1}{n})= [/mm]
[mm] \summe_{n=1}^{\infty} (-1)^{n}*0= [/mm] 0

Grenzwert 0.
Reihe konvergent

Gruss

        
Bezug
Konvergenz von Reihen: Korrektur
Status: (Antwort) fertig Status 
Datum: 16:04 Do 23.04.2009
Autor: Roadrunner

Hallo Stevie!


Idee: sehr gut! Ausführung: mangelhaft!

Es gilt:
[mm] $$\summe_{n=1}^{\infty} (-1)^{n}*\left( 1-\bruch{n+1}{n}\right) [/mm] \ = \ ... \ = \ [mm] \summe_{n=1}^{\infty} (-1)^{n}*\left(\red{-}\bruch{1}{n}\right) [/mm] \ = \ [mm] -\summe_{n=1}^{\infty} (-1)^{n}*\bruch{1}{n}$$ [/mm]


Nun musst Du noch nachweisen, dass [mm] $\bruch{1}{n}$ [/mm] eine monoton fallende Nullfolge ist.


Gruß vom
Roadrunner


Bezug
                
Bezug
Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Do 23.04.2009
Autor: StevieG

Was war bei meiner rechnung falsch? Was war mein Fehler?

Wie kommt auf das  - [mm] \bruch{1}{n}? [/mm]

gruss Stevie

Bezug
                        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Do 23.04.2009
Autor: angela.h.b.


> Was war bei meiner rechnung falsch? Was war mein Fehler?

Hallo,

bis auf die Idee mit dem Leibniz-Kriterium war ziemlich viel falsch.

Wie lautet denn das Leibnizkriterium genau? Wenn Du das sagen kannst, wird Dir klar werden, was zu zeigen ist. Roadrunner hat's ja auch schon gesagt.

Rechentechnisch gibt es auch Unerfreulichkeiten zu vermelden:


> > >$ [mm] ...=\summe_{n=1}^{\infty} (-1)^{n}( [/mm] $ 1- $ [mm] \bruch{n}{n} [/mm] $ + $ [mm] \bruch{1}{n}) [/mm]

Das ist verkehrt, denn es ist  [mm] 1-\bruch{n+1}{n}=1- \red{(}\bruch{n}{n}+ \bruch {1}{n}\red{)}. [/mm]


Dies hier ist kompletter Kokolores, Du fummelst da am Summationsindex rum:

> > >[...] = [mm] \limes_{n\rightarrow\infty}\summe_{n=1}^{\infty} (-1)^{n}(1-1 +\bruch{1}{n})= [/mm] $

$ [mm] \summe_{n=1}^{\infty} (-1)^{n}\cdot{}0= [/mm] $ 0

(Wenn man das so machen könnte, würde ja der Reihenwert einer jeglichen Reihe [mm] \summe a_n, [/mm] bei welcher [mm] a_n [/mm] gegen 0 konvergiert, 0 sein, was nicht der Fall ist.)

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]