www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 29.11.2005
Autor: Franzie

Hallöchen alle zusammen!
Hab mal ne Frage bezüglich Konvergenz von folgenden Reihen:

a)  [mm] \summe_{n=1}^{\infty} [/mm] ( [mm] \wurzel{n+1}- \wurzel{n})/(n^{3/4}) [/mm]
ich denke ja, diese Reihe ist konvergent, man müsste bestimmt das Majorantenkriterium anwenden, so etwa?
[mm] \summe_{n=1}^{\infty} [/mm] ( [mm] \wurzel{n+1}- \wurzel{n})/(n^{3/4}) \le \wurzel{n}/(\wurzel{n}*n^{1/4}*\wurzel{n^{4}}) \le 1/n^{2} [/mm]

b)  [mm] \summe_{n=2}^{\infty} [/mm] 1/(ln n) ^{ln n}) ist meiner Meinung nach auch konvergent, aber wie kann ich das zeigen?

liebe Grüße


        
Bezug
Konvergenz von Reihen: Aufgabe a)
Status: (Antwort) fertig Status 
Datum: 18:28 Di 29.11.2005
Autor: MathePower

Hallo Franzie,

> Hallöchen alle zusammen!
>  Hab mal ne Frage bezüglich Konvergenz von folgenden
> Reihen:
>  
> a)  [mm]\summe_{n=1}^{\infty}[/mm] ( [mm]\wurzel{n+1}- \wurzel{n})/(n^{3/4})[/mm]
>  
> ich denke ja, diese Reihe ist konvergent, man müsste
> bestimmt das Majorantenkriterium anwenden, so etwa?
>   [mm]\summe_{n=1}^{\infty}[/mm] ( [mm]\wurzel{n+1}- \wurzel{n})/(n^{3/4}) \le \wurzel{n}/(\wurzel{n}*n^{1/4}*\wurzel{n^{4}}) \le 1/n^{2}[/mm]

zu zeigen ist, daß die Summendifferenz immer kleiner wird.

Also:

[mm] \mathop {\lim }\limits_{k \to \infty } \sum\limits_{n = 1}^k {\frac{{\sqrt {n + 1} \; - \;\sqrt n }} {{n^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} }}} \; - \;\sum\limits_{n = 1}^{k - 1} {\frac{{\sqrt {n + 1} \; - \;\sqrt n }} {{n^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} }}} \; = \;\mathop {\lim }\limits_{n \to \infty } \frac{{\sqrt {n + 1} \; - \;\sqrt n }} {{n^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} }}[/mm]

[mm] \mathop {\lim }\limits_{n \to \infty } \frac{{\sqrt {n + 1} \; - \;\sqrt n }} {{n^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} }}\; = \;\mathop {\lim }\limits_{n \to \infty } \frac{{n\; + \;1\; - \;n}} {{n^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} \;\left( {\sqrt {n + 1} \; + \;\sqrt n } \right)}}\; = \;\mathop {\lim }\limits_{n \to \infty } \frac{1} {{n^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 4}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$4$}}} \;\left( {\sqrt {n + 1} \; + \;\sqrt n } \right)}}\; = \;0 [/mm]

Folglich ist obige Reihe konvergent.

Gruß
MathePower

Bezug
                
Bezug
Konvergenz von Reihen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:42 Di 29.11.2005
Autor: Franzie

Klingt logisch. Aber welches Kriterium hast du denn dafür verwendet? Ich dachte, ich muss zeigen, dass es eine konvergente Majorante gibt, aber warum zeigst du, dass die Folge gegen 0 strebt?

liebe Grüße

Bezug
                        
Bezug
Konvergenz von Reihen: kurze Erläuterung
Status: (Antwort) fertig Status 
Datum: 20:58 Di 29.11.2005
Autor: Loddar

Hallo Franzie!


Hier hat MathePower benutzt, dass eine Folge konvergiert, wenn der Abstand der einzelnen Folgenglieder eine Nullfolge ist:

[mm] $\left< a_n \right> [/mm] \ [mm] \text{konvergent} [/mm] \ \ [mm] \gdw [/mm] \ \ \ [mm] \limes_{n\rightarrow\infty}\left(a_n-a_{n-1}\right) [/mm] \ = \ 0$


Dafür hat MathePower unsere Reihe zerlegt uns als Folge betrachtet.

[mm] $s_k [/mm] \ := \ [mm] \summe_{n=1}^{k}\bruch{\wurzel{n+1}-\wurzel{n}}{n^{\bruch{3}{4}}}$ [/mm]


Gruß
Loddar


Bezug
        
Bezug
Konvergenz von Reihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 So 04.12.2005
Autor: Loddar

Hallo Franzie!


Leider konnte Dir keiner hier mit Deinem Problem vollständig in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]