www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Funktionenfolge
Konvergenz von Funktionenfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Funktionenfolge: Vorgehensweise der Analyse
Status: (Frage) beantwortet Status 
Datum: 10:11 Di 15.01.2008
Autor: devilsdoormat

Aufgabe
Für [mm]n \in\IN[/mm] sei [mm]f_n : \left(0,\infty \right) \rightarrow \IR[/mm] definiert durch
[mm]f_n\left(x \right) := \bruch{1}{1+x^n}[/mm]
Zeigen Sie: Die Folge [mm]\left(f_n \right) [/mm] konvergiert punktweise, aber nicht gleichmäßig, gegen eine Funktion [mm]f : \left(0,\infty \right) \rightarrow \IR[/mm].

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Kriterien für die punktweise und gleichmäßige Konvergenz sind mir sowohl anschaulich als auch formal klar. Ich habe nur bisher eine solche Analyse noch nicht durchgeführt und bin mir daher nicht sicher was genau ich alles zeigen muss.

zunächst habe ich die Funktionenfolge betrachtet und mir überlegt, dass sie gegen die Funktion
[mm]f\left(x \right) =\left\{\begin{matrix} 1, & \mbox{für }x<1 \\ \bruch{1}{2}, & \mbox{für }x=1 \\ 0, & \mbox{für }x>1 \\ \end{matrix}\right.[/mm]
konvergiert.

Nun habe ich für diese drei Fälle einzeln gezeigt:

Für [mm]x=1[/mm]:

[mm]\left| f_n\left(1 \right) { - } f\left(1 \right) \right| = \left| \bruch{1}{1+1^n} - \bruch{1}{2} \right| = 0 < \epsilon[/mm]

Damit ist [mm]f_n\left( x \right) [/mm] punktweise konvergent gegen [mm]f\left( x \right) [/mm] in x=1.

Für die beiden anderen Fälle habe ich nun ein [mm]n_0\left( \epsilon,x \right) [/mm] berechnet, so dass die Forderung der punktweisen Konvergenz erfüllt wird:

Für [mm]0 [mm]\begin{matrix}\left| f_n\left( x \right) { - } f\left( x \right) \right| = \left| \bruch{1}{1+x^n}-1 \right| = -\bruch{1}{1+x^n} + 1 < \epsilon \\ \gdw -1 < \left( \epsilon { - } 1 \right) *\left( 1 + x^n \right) \\ \gdw -\epsilon < x^n*\left( \epsilon { - } 1 \right) \\ \gdw ln\left( -\epsilon \right) < ln[x^n*\left( \epsilon { - } 1 \right) ] \\ \gdw \bruch{ln\left( -\bruch{\epsilon}{\epsilon { - } 1} \right) }{ln\left( x \right) } < n \end{matrix} \Rightarrow n_0\left( \epsilon,x \right) := \left[ \bruch{ln\left( -\bruch{\epsilon}{\epsilon { - } 1} \right) }{ln\left( x \right) } \right] + 1 [/mm]

Für x>1 bin ich äquivalent auf
[mm]n_0\left( \epsilon,x \right) := \left[ \bruch{ln\left( \bruch{1}{\epsilon} - 1 \right) }{ln\left( x \right) } \right] + 1[/mm]

gekommen.
Die so gewonnen [mm]n_0\left( \epsilon,x \right)[/mm] stimmen auf jeden Fall, so dass die Forderung der punktweisen Konvergenz erfüllt ist.
Reicht dies aber schon aus, um die punktweise Konvergenz zu zeigen, oder muss ich dem Ganzen noch etwas anfügen?

Zur gleichmäßigen Konvergenz habe ich mir folgendes überlegt (aber noch nicht durchgerechnet): ich würde versuchen zu zeigen, dass sich [mm]f_n\left(x \right) := \bruch{1}{1+x^n}[/mm] als Komposition stetiger Funktionen darstellen lässt also selber stetig für alle [mm]n \in\IN[/mm] ist. Würde [mm]f_n[/mm] nun gleichmäßig konvergieren, so müsste [mm]f[/mm] auch stetig sein. Da dies nicht der Fall ist, konvergiert [mm]f_n[/mm] nicht gleichmäßig.

Liege ich mit meiner Vorgehensweise hier richtig?

Ich danke euch für jede Hilfe!!



        
Bezug
Konvergenz von Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Di 15.01.2008
Autor: luis52


>  
> zunächst habe ich die Funktionenfolge betrachtet und mir
> überlegt, dass sie gegen die Funktion
>  [mm]f\left(x \right) =\left\{\begin{matrix} 1, & \mbox{für }x<1 \\ \bruch{1}{2}, & \mbox{für }x=1 \\ 0, & \mbox{für }x>1 \\ \end{matrix}\right.[/mm]
>  
> konvergiert.
>  

> ...

>  Reicht dies aber schon aus, um die punktweise Konvergenz
> zu zeigen,

[ok]


> oder muss ich dem Ganzen noch etwas anfügen?

Mir reicht's. ;-)

>  
> Zur gleichmäßigen Konvergenz habe ich mir folgendes
> überlegt (aber noch nicht durchgerechnet): ich würde
> versuchen zu zeigen, dass sich [mm]f_n\left(x \right) := \bruch{1}{1+x^n}[/mm]
> als Komposition stetiger Funktionen darstellen lässt also
> selber stetig für alle [mm]n \in\IN[/mm] ist. Würde [mm]f_n[/mm] nun
> gleichmäßig konvergieren, so müsste [mm]f[/mm] auch stetig sein. Da
> dies nicht der Fall ist, konvergiert [mm]f_n[/mm] nicht
> gleichmäßig.
>  

[ok] Super Argument.

vg Luis


Bezug
                
Bezug
Konvergenz von Funktionenfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 Di 15.01.2008
Autor: devilsdoormat

Danke!

Dann werde ich das so mal machen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]