www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Folgen
Konvergenz von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Idee
Status: (Frage) beantwortet Status 
Datum: 12:00 Mo 31.10.2011
Autor: Levit

Aufgabe
Zeigen sie mit der Epsilon-Definition des Grenzwertes:
Falls die Folge [mm] b_n [/mm] konvergiert, dann konvergiert die durch [mm] c_n:=|b_n| [/mm] definierte Folge.

Kann mir jemand vielleicht einen Ansatz oder eine Idee geben? Muss ich eine Fallunterscheidung machen? Denn wenn [mm] b_n [/mm] für alle n positiv ist, ist das ja trivial.

        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Mo 31.10.2011
Autor: Schadowmaster

jupp, eine Fallunterscheidung wäre eine Möglichkeit.
Aber benutzt du da die Epsilon-Definition?
Sei c der Grenzwert der Folge [mm] $(c)_n$ [/mm]
Dann muss gelten:
[mm] $|c_n [/mm] - c| < [mm] \epsilon$ [/mm]   für ausreichend große $n [mm] \in \IN$. [/mm]

Wenn die Folge [mm] $b_n$ [/mm] gegen den Grenzwert b konvertiert, wogegen definiert dann wohl [mm] $|b_n|$? [/mm]

Nimm also einfach den Grenzwert an und zeige dann (zB mit Dreiecksungleichung), dass du tatsächlich den richtigen Grenzwert hast.

lg

Schadow

Bezug
                
Bezug
Konvergenz von Folgen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:32 Mo 31.10.2011
Autor: Levit

Wir haben noch folgenden Hinweis bekommen:
|x+y| [mm] \le [/mm] |x|+|y| => ||x|-|y|| [mm] \le [/mm] |x-y|.

Das hieße doch: [mm] |c_n-c|=||b_n|-|b|| \le |b_n-b| \le \epsilon. [/mm]

Und das wars dann doch schon, oder?

Bezug
                        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Mo 31.10.2011
Autor: Schadowmaster


> Wir haben noch folgenden Hinweis bekommen:
>  |x+y| [mm]\le[/mm] |x|+|y| => ||x|-|y|| [mm]\le[/mm] |x-y|.

>  
> Das hieße doch: [mm]|c_n-c|=||b_n|-|b|| \le |b_n-b| \le \epsilon.[/mm]
>  
> Und das wars dann doch schon, oder?

[ok]


Bezug
        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Mo 31.10.2011
Autor: fred97

Von einer Fallunterscheidung rate ich ab.

Tipp:

            $| ~|x|-|y| ~| [mm] \le [/mm] |x-y|$

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]