www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenz unendlicher Potenz
Konvergenz unendlicher Potenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz unendlicher Potenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Mo 22.11.2004
Autor: Hanno

Hallo!

Ich würde gerne untersuchen, wieso die Funktion
[mm] $f(x)=x\uparrow\uparrow \infty=x^{x{^{x{^{x{^{x{^{x{^{x{^{x^{...}}}}}}}}}}}}}}$ [/mm]
für alle [mm] $x\in [e^{-e},e^{\frac{1}{e}}]$ [/mm] konvergiert.

Kann mir jemand sagen, wieso dem so ist?

Liebe Grüße und Danke,
Hanno

        
Bezug
Konvergenz unendlicher Potenz: Unendliche Potenz
Status: (Antwort) fertig Status 
Datum: 23:56 Mo 22.11.2004
Autor: Clemens

Hallo Hanno!

Ich glaube, dem ist gar nicht so, denn wenn x = [mm] e^{(e^{-1})}, [/mm] dann gilt für die folgendermaßen definierte Folge:
f(0) := x;
f(n+1) := [mm] f(n)^{x} [/mm]
die Beziehung:
f(n) = [mm] e^{(e^{n*e^{-1} - 1})} [/mm]
denn:
f(0) = [mm] e^{(e^{0*e^{-1} - 1})} [/mm] = [mm] e^{(e^{-1})} [/mm]
und
f(n+1) = [mm] f(n)^{(e^{(e^{-1})})} [/mm] = [mm] (e^{(e^{n*e^{-1} - 1})})^{{(e^{(e^{-1})})}} [/mm] = [mm] e^{(e^{n*e^{-1} - 1})*(e^{(e^{-1})})} [/mm] = [mm] e^{(e^{(n+1)*e^{-1} - 1})} [/mm]
und diese Folge geht gegen unendlich.

Für beliebige Zahlen x aus [0;1] konvergiert das ganze aber meiner Meinung nach. Denn die Folge f(n) ist für solche x
1) nach oben beschränkt und
2) monoton steigend

Zu 1) S = 1 ist obere Schranke. Für n = 0 gilt f(n) = x <= S. Induktionsschritt: f(n+1) = [mm] f(n)^{x} [/mm]
1. Fall: x = 0: Wir definieren [mm] f(n)^{0} [/mm] = 1 <= 1 = S
2. Fall: 0 < x <=1: Wir definieren [mm] f(n)^{x} [/mm] = [mm] e^{x*ln(f(n))}. [/mm] Da f(n) <= 1 ist, gilt ln(f(n)) <= 0 und damit x*ln(f(n)) <= 0 und damit [mm] e^{x*ln(f(n))} [/mm] <= 1 = S

Zu 2) Zu zeigen: f(n + 1) >= f(n)
<==> [mm] f(n)^{x} [/mm] >= f(n)
Für x = 0 sowieso wahr. Sei x [mm] \not= [/mm] 0.
<==> [mm] e^{x*ln(f(n))} [/mm] >= f(n)
<==> x*ln(f(n)) >= ln(f(n))
Für f(n) = 1 sowieso wahr. Sei also f(n) < 1.
<==> x <= 1
Das ist wahr.


Gruß
Clemens


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]