www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer unendl. Reihe
Konvergenz einer unendl. Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer unendl. Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 Fr 02.02.2007
Autor: phys1kAueR

Aufgabe
Untersuche auf Konvergenz: [mm] \summe_{k=1}^{\infty} k^{a} a^{k} [/mm]

Also [mm] a_{k} [/mm] = [mm] k^{a} a^{k} [/mm] . Das kann ich auch schreiben als
[mm] e^{a*ln(k)} e^{k*ln(a)}= e^{a*ln(k)+k*ln(a)} [/mm]

Jetzt mit Quotientenkriterium: [mm] a_{k+1}= e^{a*ln(k+1)+(k+1)*ln(a)} [/mm]

[mm] \bruch{a_{k}}{a_{k+1}}=\bruch{ e^{a*ln(k)+k*ln(a)}}{e^{a*ln(k+1)+(k+1)*ln(a)} } [/mm]
= [mm] e^{a*ln(k)+k*ln(a)-a*ln(k+1)-(k+1)*ln(a)} [/mm] = [mm] e^{a*ln(k)+k*ln(a)-a*ln(k+1)-k*ln(a)-ln(a)} [/mm] = [mm] e^{a*ln(k)-a*ln(k+1)-ln(a)} [/mm] Also bis hier hab ich bloß zusammengefasst und "gekürzt"

Jetzt mit Logarithmusgesetz:
[mm] e^{a*ln(\bruch{k}{k+1}) - ln(a)} =e^{a*ln(1-\bruch{1}{k+1}) - ln(a)} [/mm]

Nun:
[mm] \limes_{k\rightarrow\infty} e^{a*ln(1-\bruch{1}{k+1}) - ln(a)} [/mm] = [mm] e^{-ln(a)}=\bruch{1}{a} [/mm]


Vielleicht kann mal jemand einen Blick drauf werfen und sich kritisch äußern ;)

Danke

Phys1kauer


        
Bezug
Konvergenz einer unendl. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Fr 02.02.2007
Autor: smee

Hallo!

Ich glaube, du hast das Quot.kriterium "verdreht" ;-)

Ich bin mir zwar nicht 100% sicher, aber ich denke, du kannst auch wie folgt da rangehen ...

[mm]| \bruch{a_{n+1}}{a_n} | = | \bruch{(k+1)^a*a^{k+1}}{k^a*a^k} | = | (\bruch{k+1}{k})^a * a |[/mm]

Nun kannst du ja in Abhängigkeit von a eine Aussage über die Konvergenz der Reihe treffen ...

Gruß,
Carsten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]