www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer reihe
Konvergenz einer reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Mi 29.11.2006
Autor: hammhe

Aufgabe
Untersuchen sie auf Konvergenz:

[mm] \summe_{n=1}^{N} \bruch{n^n}{n!+n^n} [/mm]

hallo,

ich denke dass die reihe gegen 1 konvergiert, weiß jedoch nicht wie ichs zeigen soll.
kann mir jemand nen tip geben?
mfg

        
Bezug
Konvergenz einer reihe: Aufgabenstellung?
Status: (Antwort) fertig Status 
Datum: 10:40 Mi 29.11.2006
Autor: Loddar

Hallo Hammhe!


Kannst Du vielleicht nochmal Deine angegebene Reihe überprüfen? Da kürzt sich ja in der dargestellten Form der Term [mm] $n^n$ [/mm] heraus.

Zudem ist der konkrete Grenzwert dieser Reihe gar nicht gefragt, sondern lediglich, ob diese Reihe konvergiert.

Hier bietet sich dafür das []Quotientenkriterium an.


Gruß
Loddar


Bezug
                
Bezug
Konvergenz einer reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 Mi 29.11.2006
Autor: hammhe

hallo loddar,

entschuldigung, ich hatte das + im nenner vergessen.
irgendwie hab ich ein brett vorm kopf.
mit dem quotientenkriterium komm ich an einer stelle nicht mehr weiter

[mm] \bruch{(n+1)(n+1)^n (n!+n^n)}{(n+1)!n^n+2n^n} [/mm]

bin ich da auf dem holzweg oder seh ich was nicht?

mfg

Bezug
                        
Bezug
Konvergenz einer reihe: "falscher" Tipp
Status: (Antwort) fertig Status 
Datum: 09:53 Do 30.11.2006
Autor: Loddar

Hallo hammhe!


Durch die etwas geänderte Aufgabenstellung habe ich Dich leider auf die falsche Fährte geschickt.

Untersuche doch mal zunächst die Folge [mm] $\bruch{n^n}{n!+n^n}$ [/mm] auf deren Grenzwert.
Ist das notwendige Kriterium für die Reihenkonvergenz als Nullfolge erfüllt?


Tipp zur Grenzwertermittlung: [mm] $n^n$ [/mm] ausklammern und kürzen:

[mm] $\bruch{n^n}{n!+n^n} [/mm] \ = \ [mm] \bruch{n^n}{n^n*\left(\bruch{n!}{n^n}+1\right)} [/mm] \ = \ [mm] \bruch{1}{\bruch{n!}{n^n}+1}$ [/mm]


Für den Grenzwert von [mm] $\bruch{n!}{n^n}$ [/mm] siehe mal hier (muss halt auf Deine Aufgabe umgewandelt werden).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]