www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Folge-Beweis
Konvergenz einer Folge-Beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge-Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:34 Mo 04.05.2009
Autor: FraeuleinM

Aufgabe
[mm] a_n :=(5n^2+17n+19)/(n^2+3n+7). [/mm]  

guten morgen!

bei dieser aufgabe ist der gw zu berechnen und diesen dann zu beweisen.
der gw ist 5. aber das ist ja nicht mein problem bei der ganzen sache. ich verstehe den beweis, der uns gezeigt wurde, nicht:

[mm] |a_n-a|=|2n-16|/(n^2+3n+7)\le(2n+16)/(n^2+3n+7)\le(2n+16n)/n^2 \le18/n [/mm]

kann ich denn einfach so willkürlich etwas wegkürzen oder dazugeben, damit ein term größer ist als sein "vorgänger"? Beziehungsweise ist das ganze denn überhaupt willkürlich?
und was hab ich da jetzt zum schluss stehen? inwiefern hilft mir das?

sei e>0. Wähle N>18/e (warum auf einmal 18/e? vorhin wars ja 18/n)

Sei n>=N. Dann ist [mm] |a_n-5|<=18/n
wäre ganz toll, wenn mir das wer erklären könnte!

lg

        
Bezug
Konvergenz einer Folge-Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:57 Mo 04.05.2009
Autor: BBFan


> [mm]a_n :=(5n^2+17n+19)/(n^2+3n+7).[/mm]
> guten morgen!
>  
> bei dieser aufgabe ist der gw zu berechnen und diesen dann
> zu beweisen.
>  der gw ist 5. aber das ist ja nicht mein problem bei der
> ganzen sache. ich verstehe den beweis, der uns gezeigt
> wurde, nicht:
>  
> [mm]|a_n-a|=|2n-16|/(n^2+3n+7)\le(2n+16)/(n^2+3n+7)\le(2n+16n)/n^2 \le18/n[/mm]

Das bezieht sich sicher auf eine ähnliche Aufgabe.

>  
> kann ich denn einfach so willkürlich etwas wegkürzen oder
> dazugeben, damit ein term größer ist als sein "vorgänger"?

Ja kannst Du. Solange Du eine Abschätzung in nur eine Richtung machst, ist das OK.

> Beziehungsweise ist das ganze denn überhaupt willkürlich?

Nein, man will am Ende eine Nullfolge stehen haben.

>  und was hab ich da jetzt zum schluss stehen? inwiefern
> hilft mir das?

Nun ja, da steht eine Nullfolge. D.h. die Folge [mm] |a_n [/mm] - 5| konvergiert gegen 0. Das ist doch ein Kriterium, dass [mm] a_n [/mm] gegen 5 geht.

>
> sei e>0. Wähle N>18/e (warum auf einmal 18/e? vorhin wars
> ja 18/n)
>  
> Sei n>=N. Dann ist [mm]|a_n-5|<=18/n
> ich, da man ja das e beliebig klein wählen kann und das N
> von e abhängt.)

  
Nun will man zeigen, dass zu jedem [mm] \varepsilon [/mm] > 0 ein N [mm] \varepsilon \IN [/mm] existiert, so dass [mm] a_n [/mm] für alle n > N in der Epsilonumgebung von 5 liegt. Das zeigt dann mit Hilfe der Definition, dass 5 der Grenzwert der Folge [mm] a_n [/mm] ist.

> wäre ganz toll, wenn mir das wer erklären könnte!
>  
> lg

Gruss
BBFan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]