www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz bestimmen 5
Konvergenz bestimmen 5 < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz bestimmen 5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 So 01.11.2009
Autor: kushkush

Aufgabe
Untersuche die folgende Reihe auf Konvergenz:

e) [mm] $\summe_{k=1}^{\infty}\frac{1}{k!}$ [/mm]

Guten Abend,


ich habe hier das Quotientenkriterium verwendet:

[mm] $\limes_{k\rightarrow\infty}\frac{1}{k+1} [/mm] = 0$

nur bringt mich das nirgendwo hin da ja 0<q<1 sein muss...

also bliebe noch das Majorantenkriterium, allerdings kenne (und finde) ich auch keine Reihe, unter die ich [mm] \frac{1}{k!} [/mm] schieben könnte....


Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.



        
Bezug
Konvergenz bestimmen 5: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 So 01.11.2009
Autor: steppenhahn

Hallo!

> Untersuche die folgende Reihe auf Konvergenz:
>  
> e) [mm]\summe_{k=1}^{\infty}\frac{1}{k!}[/mm]


> ich habe hier das Quotientenkriterium verwendet:
>
> [mm]\limes_{k\rightarrow\infty}\frac{1}{k+1} = 0[/mm]
>  
> nur bringt mich das nirgendwo hin da ja 0<q<1 sein muss...

Und wieder: Das Quotientenkriterium lautet anders! q muss nicht größer als 0 sein, es kann auch gleich 0 sein.

Die Reihe konvergiert nach dem Quotientenkriterium.

> also bliebe noch das Majorantenkriterium, allerdings kenne
> (und finde) ich auch keine Reihe, unter die ich
> [mm]\frac{1}{k!}[/mm] schieben könnte....

Das wird auch schwierig, wenn ihr in der Vorlesung noch nicht einmal wisst, dass die obige Reihe konvergiert. nach k! käme aber so etwas wie [mm] k^{k}. [/mm]

Grüße,
Stefan  

Bezug
                
Bezug
Konvergenz bestimmen 5: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 So 01.11.2009
Autor: kushkush

Hi steppenhahn und Dankeschön.,



Ich weiss schon dass diese Reihe nach e konvergiert, nur wollte ich wissen ob meine Anwendung des Quotientenkriteriums richtig war oder nicht.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]