www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz abh von a0
Konvergenz abh von a0 < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz abh von a0: Zusammenhang a0, Konvergenz
Status: (Frage) beantwortet Status 
Datum: 00:28 Mo 26.04.2010
Autor: yogi_inf

Aufgabe
Für welche Werte [mm] a_{0} \in \IR [/mm]  konvergiert die rekursiv definierte Folge [mm] (a_{n}) [/mm]
mit [mm] a_{n+1} [/mm] := [mm] \bruch{1}{4} [/mm] * [mm] ((a_{n})^{2}+3) [/mm]
n [mm] \in \IN [/mm]

Hallo,
Es geht darum, ein Anfangsglied [mm] a_{0} [/mm] zu bestimmen, so dass die Folge konvergiert.

Durch ausprobieren findet man leicht heraus, dass dies im Bereich [-3,3] der Fall ist.
für [mm] -1 für [mm] 1<=a_{0}<3 [/mm]  konvergiert es gegen 1.
analog für [mm] -1<=a_{0}<-3. [/mm]
für 3 konvergiert es gegen 4
über 3 ist es divergent.

Die Frage ist jetzt, wie formulier ich das mathematisch valide?
Ich seh keinen rechten Ansatz um einen Grenzwert zu bilden mit a0 als variable.
Muss ich da vllt verscuehn die explizite Darstellung in Abhängigkeit von a0 rauszufinden?
Über Hilfe freu ich mich :)
gruß
yogi


        
Bezug
Konvergenz abh von a0: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Mo 26.04.2010
Autor: fred97


> Für welche Werte [mm]a_{0} \in \IR[/mm]  konvergiert die rekursiv
> definierte Folge [mm](a_{n})[/mm]
>  mit [mm]a_{n+1}[/mm] := [mm]\bruch{1}{4}[/mm] * [mm]((a_{n})^{2}+3)[/mm]
>  n [mm]\in \IN[/mm]
>  Hallo,
>  Es geht darum, ein Anfangsglied [mm]a_{0}[/mm] zu bestimmen, so
> dass die Folge konvergiert.
>  
> Durch ausprobieren findet man leicht heraus, dass dies im
> Bereich [-3,3] der Fall ist.
>  für [mm]-1


Das kann nicht sein !  Nehmen wir mal an, dass [mm] (a_n) [/mm] konvergiert. Sei a der Grenzwert von [mm] (a_n). [/mm] Aus der Rekursion folgt:

a = [mm]\bruch{1}{4}[/mm] * [mm](a^{2}+3)[/mm],

also ist a=1 oder a=3

          


>  für [mm]1<=a_{0}<3[/mm]  konvergiert es gegen 1.


Beweis ?


>  analog für [mm]-1<=a_{0}<-3.[/mm]
>  für 3 konvergiert es gegen 4


Nein. Siehe oben



FRED



>  über 3 ist es divergent.
>  
> Die Frage ist jetzt, wie formulier ich das mathematisch
> valide?
>  Ich seh keinen rechten Ansatz um einen Grenzwert zu bilden
> mit a0 als variable.
>  Muss ich da vllt verscuehn die explizite Darstellung in
> Abhängigkeit von a0 rauszufinden?
>  Über Hilfe freu ich mich :)
>  gruß
>  yogi
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]