www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Konvergenz Summe gg Integral
Konvergenz Summe gg Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Summe gg Integral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:40 Do 26.04.2007
Autor: math.ias

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gegeben ist ein Funktion [mm] f\in\mathcal{C}^2(\mathbb{R}^{+})[/mm] und beschränkt.
Folgt die gleichmäßige Konvergenz der Summe
[mm] \sum_{j=1}^{\infty}(f(x+j\Delta)-f(x)) e^{-j\Delta}\Delta [/mm]
für [mm] {\Delta \to 0}[/mm] gegen
[mm]\int_{0}^{\infty}(f(x+z)-f(x)) e^{-z}dz[/mm]
direkt aus der Definition des Integrals, oder muss ich noch etwas zeigen? Ich weiß nämlich nicht wie ich hier vorgehen soll.

        
Bezug
Konvergenz Summe gg Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Do 26.04.2007
Autor: Mathe_Alex

Äh...wie ist denn die genaue Aufgabenstellung?
Grundsätzlich würd ich sagen nein: Du weißt ja nicht mal, ob das uneigentliche Integral existiert...


Bezug
                
Bezug
Konvergenz Summe gg Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:40 Fr 27.04.2007
Autor: math.ias

Danke für deine Mitteilung.

Es ist eine Numerikaufgabe. Das Integral
[mm]F:=\int_{0}^{\infty}(f(x+z)-f(x)) e^{-z}dz[/mm]
sollte durch die Summe
[mm]F_{\Delta}:= \sum_{j=1}^{\infty}(f(x+j\Delta)-f(x)) e^{-j\Delta}\Delta [/mm]
approximiert werden, damit es in einem Programm implementiert werden kann. Deshalb hatte ich die x-Achse äquidistante Intervalle zerlegt ([mm]\Delta[/mm]) und hab dann die Treppenfunktion oben benutzt.
Ich sollte aber nun noch zeigen, dass
[mm]\lim_{\Delta\to0}\sup_{x\in R^{+}}\mid F_{\Delta}(x)-F(x)\mid = 0[/mm]
gilt.

Es kann auch angenommen werden, dass die Summe endlich ist, d.h. nur bis N läuft und das Integral somit bis [mm]N\Delta[/mm]. Da f beschränkt ist existiert ja dann auch das Intergal in dem Intervall.

Bezug
        
Bezug
Konvergenz Summe gg Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Mi 02.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]