www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz Reihe
Konvergenz Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Reihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:56 Mi 12.12.2007
Autor: kibard

Aufgabe
Untersuchen Sie die folgenden Reihen auf Konvergenz:

1. [mm] (-1)^{n}(\wurzel[n]{n}-1) [/mm]

Hallo ihr Lieben,

ich brauche hier ein wenig Unterstützung, weil ich nicht wirklich weiter komme.Wäre toll,wenn mir jemand hilft.

Zum ersten: Also da nehm ich an, dass man Leibniz benutzen muss. Dafür müssen zwei Kriterien erfüllt sein:
Es muss eine Nullfolge sein (ist in diesem Fall so)
Es muss monoton fallend sein. Und genau hier scheitert es bei mir. Ich weiß nicht wie ich das beweisen kann. Kann man da noch was anders schreiben oder ausrechnen oder so?
Danke schön



        
Bezug
Konvergenz Reihe: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:04 Mi 12.12.2007
Autor: Loddar

Hallo kibard!


Wenn Du gezeigt hast (oder voraussetzen darfst), dass [mm] $\limes_{n\rightarrow\infty}\wurzel[n]{n} [/mm] \ = \ 1$ , folgt die Monotonie, wenn Du zeigst:
[mm] $$\wurzel[n]{n} [/mm] \ [mm] \ge [/mm] \ 1$$

Gruß
Loddar


Bezug
                
Bezug
Konvergenz Reihe: tipp
Status: (Frage) überfällig Status 
Datum: 21:59 Mi 12.12.2007
Autor: Betman

Wieso kann man dann sagen, dass monotonie folgt??
also aus [mm] n\ge [/mm] 1 [mm] \Rightarrow \wurzel[n]{n}\ge \wurzel[n]{1}, [/mm] also
[mm] \wurzel[n]{n}\ge [/mm] 1
wärs das?? und wieso folgt dann genau montonie??
vielen dank!!

Bezug
                        
Bezug
Konvergenz Reihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 Fr 14.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]