www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz Reihe
Konvergenz Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Reihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 06:57 Mi 19.11.2014
Autor: dodo1924

Aufgabe
Ist die folgende Reihe divergent, konvergent oder absolut konvergent?

[mm] \summe_{k=1}^{\infty}\bruch{e^k}{k^5} [/mm]

Bei dieser Aufgabe war ich mir unsicher und wollte euch fragen, ob meine Lösung stimmt.

Ich habe absolute konvergenz mithilfe des Wurzelkriteriums gezeigt:

[mm] k\wurzel{\bruch{e^k}{k^5}} [/mm] = [mm] \bruch{e}{k\wurzel{k^5}} [/mm] = [mm] \bruch{e}{k\wurzel{k}^5} [/mm]

[mm] \limes_{k\rightarrow\infty} \bruch{e}{k\wurzel{k}^5} [/mm] = 0, da ja e = 2,7182818... und der untere Termk [mm] k\wurzel{k}^5 [/mm] für [mm] n\ge2 [/mm] immer größer als e ist, also die Folge monoton fällt.

Da nun die Folge gegen 0 konvergiert, der Limes also kleiner als 1 ist, folgt nach dem Wurzelkriterium, dass die Reihe [mm] \summe_{k=1}^{\infty}\bruch{e^k}{k^5} [/mm] absolut konvergent ist.
Richtig?

        
Bezug
Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 19.11.2014
Autor: chrisno


> Ist die folgende Reihe divergent, konvergent oder absolut
> konvergent?
>  
> [mm]\summe_{k=1}^{\infty}\bruch{e^k}{k^5}[/mm]
>  Bei dieser Aufgabe war ich mir unsicher und wollte euch
> fragen, ob meine Lösung stimmt.

Merke: [mm] $e^x$ [/mm] schlägt jede Potenz
Von daher ist klar, dass die Reihe divergiert.

>  
> Ich habe absolute konvergenz mithilfe des Wurzelkriteriums
> gezeigt:
>  
> [mm]\wurzel[k]{\bruch{e^k}{k^5}} = \bruch{e}{\wurzel[k]{k^5}} = \bruch{e}{k^{\br{5}{k}}}[/mm]

Ich habe mal das gesetzt, was Du wahrscheinlich meinst.

>  
> [mm]\limes_{k\rightarrow\infty} \bruch{e}{\wurzel[k]{k}^5}[/mm] = 0,
> da ja e = 2,7182818... und der untere Termk [mm]k\wurzel{k}^5[/mm]
> für [mm]n\ge2[/mm] immer größer als e ist,

Da frage ich mal meinen Taschenrechner: [mm] $100^{\br{5}{100}} \approx [/mm] 1,26$ sagt der.

> also die Folge monoton
> fällt.
>  
> Da nun die Folge gegen 0 konvergiert, der Limes also
> kleiner als 1 ist, folgt nach dem Wurzelkriterium, dass die
> Reihe [mm]\summe_{k=1}^{\infty}\bruch{e^k}{k^5}[/mm] absolut
> konvergent ist.
>  Richtig?


Bezug
                
Bezug
Konvergenz Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:09 Mi 19.11.2014
Autor: dodo1924

Ok, da hab ich die wurzel wohl falsch in den taschenrechner eingetippt und bin deshalb auf extrem hohe ergebnisse gekommen ^^

Dann gilt, dass [mm] k^\bruch{5}{k} [/mm] ab n=5 immer kleiner wird und ab einem [mm] n_e [/mm] sogar e unterschreitet, was zur Folge hat, dass die Folge  [mm] \bruch{e}{k^\bruch{5}{k}} [/mm] gegen e strebt (da sich [mm] k^\bruch{5}{k} [/mm] ja der 1 annähert) oder?
Also ist der limes größer als 1 [mm] (\limes_{n\rightarrow\infty} \bruch{e^k}{k^5} [/mm] = e > 1), also ist die Reihe lt Wurzelkriterium divergent!
Nun richtig?

Danke, dass du mich auf den Fehler aufmerksam gemacht hast! ;)

Bezug
                        
Bezug
Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Mi 19.11.2014
Autor: fred97


> Ok, da hab ich die wurzel wohl falsch in den taschenrechner
> eingetippt und bin deshalb auf extrem hohe ergebnisse
> gekommen ^^
>  
> Dann gilt, dass [mm]k^\bruch{5}{k}[/mm] ab n=5 immer kleiner wird

wieso ?

k , dann n ??? Entscheide Dich mal !


> und ab einem [mm]n_e[/mm] sogar e unterschreitet,

wieso ?

>  was zur Folge hat,
> dass die Folge  [mm]\bruch{e}{k^\bruch{5}{k}}[/mm] gegen e strebt
> (da sich [mm]k^\bruch{5}{k}[/mm] ja der 1 annähert) oder?

Ja, aber ohne obiges Blabla

[mm] k^\bruch{5}{k} \to [/mm] 1 (k [mm] \to \infty) [/mm]

somit haben wir [mm]\bruch{e}{k^\bruch{5}{k}} \to e[/mm]


>  Also ist der limes größer als 1


Ja,


> [mm](\limes_{n\rightarrow\infty} \bruch{e^k}{k^5}[/mm] = e > 1),

Das ist jetzt aber nicht richtig ! Es gilt

  [mm]\limes_{k\rightarrow\infty} \bruch{e^k}{k^5}= \infty[/mm]


> also ist die Reihe lt Wurzelkriterium divergent!
>  Nun richtig?

Ja, bis auf

    [mm](\limes_{n\rightarrow\infty} \bruch{e^k}{k^5}[/mm] = e > 1),


FRED

>  
> Danke, dass du mich auf den Fehler aufmerksam gemacht hast!
> ;)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]