www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konvergenz Potenzreihe
Konvergenz Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Di 04.06.2013
Autor: lisa2802

Hallo ihr Lieben,

Ich bereite mich momentan auf meine Modulprüfung Analysis 1&2 vor.

Und kann nirgends finden wie man die Konvergenz bei komplexen Potenzreihen auf dem Rand des Konvergenzkreises bestimmen kann.

Innerhalb des Konvergenzkreises mit dem radius r und dem Mittelpunkt [mm] z_o [/mm] konvergiert die Potenzreihe, außerhalb divergiert sie aber was ist auf dem Rand? Dort muss man das doch gesondert prüfen, aber auf dem Rand liegen ja "endlich viele"(?) Punkte die zu überprüfen sind?
Wie geht man da vor? Im reellen ist das ja "einfach" beim Konvergenzintervall die zwei Randpunkte....


Danke

Gruß
Lisa28ß2

        
Bezug
Konvergenz Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Di 04.06.2013
Autor: fred97


> Hallo ihr Lieben,
>  
> Ich bereite mich momentan auf meine Modulprüfung Analysis
> 1&2 vor.
>  
> Und kann nirgends finden wie man die Konvergenz bei
> komplexen Potenzreihen auf dem Rand des Konvergenzkreises
> bestimmen kann.

Dafür gibts kein Kochrezept !

>  
> Innerhalb des Konvergenzkreises mit dem radius r und dem
> Mittelpunkt [mm]z_o[/mm] konvergiert die Potenzreihe, außerhalb
> divergiert sie aber was ist auf dem Rand? Dort muss man das
> doch gesondert prüfen, aber auf dem Rand liegen ja
> "endlich viele"(?) Punkte die zu überprüfen sind?


Nein. Unendlich viele.




>  Wie geht man da vor?

Wie gesagt, ein Kochrezept gibts nicht

FRED


>  Im reellen ist das ja "einfach" beim
> Konvergenzintervall die zwei Randpunkte....
>  
>
> Danke
>  
> Gruß
> Lisa28ß2


Bezug
                
Bezug
Konvergenz Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Di 04.06.2013
Autor: lisa2802


> > Hallo ihr Lieben,
>  >  
> > Ich bereite mich momentan auf meine Modulprüfung Analysis
> > 1&2 vor.
>  >  
> > Und kann nirgends finden wie man die Konvergenz bei
> > komplexen Potenzreihen auf dem Rand des Konvergenzkreises
> > bestimmen kann.
>  
> Dafür gibts kein Kochrezept !
>  >  
> > Innerhalb des Konvergenzkreises mit dem radius r und dem
> > Mittelpunkt [mm]z_o[/mm] konvergiert die Potenzreihe, außerhalb
> > divergiert sie aber was ist auf dem Rand? Dort muss man das
> > doch gesondert prüfen, aber auf dem Rand liegen ja
> > "endlich viele"(?) Punkte die zu überprüfen sind?
>  
>
> Nein. Unendlich viele.

Okay gut da war ich mir nicht sicher. Danke  

>
>
>
> >  Wie geht man da vor?

>  
> Wie gesagt, ein Kochrezept gibts nicht
>  
> FRED
>  
>
> >  Im reellen ist das ja "einfach" beim

> > Konvergenzintervall die zwei Randpunkte....
>  >  
> >
> > Danke
>  >  
> > Gruß
> > Lisa28ß2
>  

Also wenn ich dann z.B in der Prüfung über den Konvergenzkreis erzähle und mein Prof dann fragt wie es auf dem Rand aussieht sag ich dann dass man da keine allgemeine Aussage treffen kann? denn "unendliche viele" Punkte kann man ja so oder so nicht überprüfen? Oder dass man sich punkte aussucht und für diese prüft?

Wenn der Konvergenzkreis eine oder beide Achsen schneidet was ist denn dann an den punkten?

Bezug
                        
Bezug
Konvergenz Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Di 04.06.2013
Autor: fred97


> > > Hallo ihr Lieben,
>  >  >  
> > > Ich bereite mich momentan auf meine Modulprüfung Analysis
> > > 1&2 vor.
>  >  >  
> > > Und kann nirgends finden wie man die Konvergenz bei
> > > komplexen Potenzreihen auf dem Rand des Konvergenzkreises
> > > bestimmen kann.
>  >  
> > Dafür gibts kein Kochrezept !
>  >  >  
> > > Innerhalb des Konvergenzkreises mit dem radius r und dem
> > > Mittelpunkt [mm]z_o[/mm] konvergiert die Potenzreihe, außerhalb
> > > divergiert sie aber was ist auf dem Rand? Dort muss man das
> > > doch gesondert prüfen, aber auf dem Rand liegen ja
> > > "endlich viele"(?) Punkte die zu überprüfen sind?
>  >  
> >
> > Nein. Unendlich viele.
>  Okay gut da war ich mir nicht sicher. Danke  
> >
> >
> >
> > >  Wie geht man da vor?

>  >  
> > Wie gesagt, ein Kochrezept gibts nicht
>  >  
> > FRED
>  >  
> >
> > >  Im reellen ist das ja "einfach" beim

> > > Konvergenzintervall die zwei Randpunkte....
>  >  >  
> > >
> > > Danke
>  >  >  
> > > Gruß
> > > Lisa28ß2
> >  

>
> Also wenn ich dann z.B in der Prüfung über den
> Konvergenzkreis erzähle und mein Prof dann fragt wie es
> auf dem Rand aussieht sag ich dann dass man da keine
> allgemeine Aussage treffen kann?

Ja

> denn "unendliche viele"
> Punkte kann man ja so oder so nicht überprüfen?


Das sag dem Prof. lieber nicht so ! Ob man "unendliche viele" Punkte überprüfen kann, hängt von der gegebenen Potenzreihe ab.

Manchmal kann mans, manchmal nicht.


>  Oder dass
> man sich punkte aussucht und für diese prüft?
>  
> Wenn der Konvergenzkreis eine oder beide Achsen schneidet
> was ist denn dann an den punkten?

Hä ? Was soll da sein ? Jedenfalls nix besonderes

FRED


Bezug
                                
Bezug
Konvergenz Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Di 04.06.2013
Autor: lisa2802

Danke! :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]