www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Konvergenz Potenzreihe
Konvergenz Potenzreihe < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 So 27.11.2011
Autor: racy90

Hallo,

Ich bin mir etwas unsicher bei 2 Aussagen über Potenzreihen.

1.Jede Potenzreihe konv. an ihrem Entwicklungspunkt .( Ich weiß es zwar mir ziemlicher Sicherheit das es stimmen sollte aber ich kann es nur schlecht ausdrücken)

2. erfüllen die Koeffizienten an einer Potenzreihe [mm] \limes_{n\rightarrow\infty}=\infty [/mm] so isr R =0

Das müsste doch lauten falls [mm] \limes_{n\rightarrow\infty} \bruch{an+1}{an} [/mm] ( dem Betrage nach) [mm] =\infty [/mm] so ist R=0

        
Bezug
Konvergenz Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 So 27.11.2011
Autor: donquijote


> Hallo,
>  
> Ich bin mir etwas unsicher bei 2 Aussagen über
> Potenzreihen.
>  
> 1.Jede Potenzreihe konv. an ihrem Entwicklungspunkt .( Ich
> weiß es zwar mir ziemlicher Sicherheit das es stimmen
> sollte aber ich kann es nur schlecht ausdrücken)

Ja, weil dann bis auf [mm] a_0 [/mm] alle Summanden 0 sind.

>  
> 2. erfüllen die Koeffizienten an einer Potenzreihe
> [mm]\limes_{n\rightarrow\infty}=\infty[/mm] so isr R =0

Das stimmt nicht, Gegenbeispiel [mm] \sum nx^n [/mm]

>  
> Das müsste doch lauten falls [mm]\limes_{n\rightarrow\infty} \bruch{an+1}{an}[/mm]
> ( dem Betrage nach) [mm]=\infty[/mm] so ist R=0

richtig. Das ist eine Folge des Quotientenkriteriums.

Bezug
                
Bezug
Konvergenz Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 So 27.11.2011
Autor: racy90

Danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]