www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 09.05.2011
Autor: al3pou

Aufgabe
Untersuchen Sie folgende Reihen auf Konvergenz mit dem Majorante- und Minoranten-Kriterium

(i) [mm] \summe_{k=1}^{\infty} \bruch{1}{k^{2} - 5k + 1} [/mm]

(ii) [mm] \summe_{k=1}^{\infty} \bruch{k + 2}{k^{3} + 5} [/mm]

Hallo,

für (i) hab ich das so gemacht


[mm] \summe_{k=1}^{\infty} \left| \bruch{1}{k^{2} - 5k + 1} \right| \le \summe_{k=1}^{\infty} \bruch{1}{k^{2} - 5k} \le \summe_{k=1}^{\infty} \bruch{2}{k^{2}} [/mm]

also eine konvergente Majorante.
Für (ii) sieht das dann so aus

[mm] \summe_{k=1}^{\infty} \bruch{k + 2}{k^{3} + 5} \le \summe_{k=1}^{\infty} \bruch{k + 2}{k^{3}} \le \summe_{k=1}^{\infty} \bruch{2k}{k^{3}} [/mm] = [mm] \summe_{k=1}^{\infty} \bruch{2}{k^{2}} [/mm]

auch eine konvergente Majorante.

Ist das so okay und richtig?

LG

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mo 09.05.2011
Autor: schachuzipus

Hallo al3pou,

> Untersuchen Sie folgende Reihen auf Konvergenz mit dem
> Majorante- und Minoranten-Kriterium
>
> (i) [mm]\summe_{k=1}^{\infty} \bruch{1}{k^{2} - 5k + 1}[/mm]
>
> (ii) [mm]\summe_{k=1}^{\infty} \bruch{k + 2}{k^{3} + 5}[/mm]
>
> Hallo,
>
> für (i) hab ich das so gemacht
>
>
> [mm]\summe_{k=1}^{\infty} \left| \bruch{1}{k^{2} - 5k + 1} \right| \le \summe_{k=1}^{\infty} \bruch{1}{k^{2} - 5k} \le \summe_{k=1}^{\infty} \bruch{2}{k^{2}}[/mm]

Stimmt denn das erste Ungleichheitszeichen?

Die Majorante ist aber gut!


> also eine konvergente Majorante.
> Für (ii) sieht das dann so aus
>
> [mm]\summe_{k=1}^{\infty} \bruch{k + 2}{k^{3} + 5} \le \summe_{k=1}^{\infty} \bruch{k + 2}{k^{3}} \le \summe_{k=1}^{\infty} \bruch{2k}{k^{3}}[/mm]

Das letzte [mm] $\le$ [/mm] stimmt für $k=1$ nicht. Nimm statt $2k$ einfach $3k$ ...

Oder schreibe den allerersten Summanden extra und schätze die Reihe ab $k=2$ mit deiner Majorante ab ...


> = [mm]\summe_{k=1}^{\infty} \bruch{2}{k^{2}}[/mm]
>
> auch eine konvergente Majorante.
>
> Ist das so okay und richtig?
>
> LG

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Mo 09.05.2011
Autor: al3pou

Alles klar. Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]