www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mi 02.03.2011
Autor: David90

Aufgabe
Überprüfen Sie die folgende Folgen auf Konvergenz. Bestimmen Sie für alle konvergenten Folgen den Grenzwert und zeigen Sie ggf. die Konvergenz gegen diesen Grenzwert. Sind die Folgen nicht konvergent, so geben Sie eine Begründung an.
[mm] \vec{a_{k}}= (\bruch{1}{k^2},\bruch{1}{k^2}) [/mm]

Hallo, also ich hätte das folgendermaßen gemacht: Wir vermuten, dass der Grenzwert 0 ist. Dann muss gelten [mm] |\vec{a_{k}}-\vektor{0 \\ 0}| \to [/mm] 0 (für k gegen [mm] \infty) [/mm] und [mm] |\vec{a_{k}}-\vektor{0 \\ 0}| [/mm] ist [mm] |\vec{a_{k}}|= \wurzel{\bruch{1}{k^4}+\bruch{1}{k^4}}=\wurzel{\bruch{2}{k^4}} [/mm] Wir wissen, dass [mm] \bruch{2}{k^4} \to [/mm] 0 (für k gegen [mm] \infty) [/mm] und wegen der Stetigkeit der Wurzelfunktion auf [mm] [0,\infty[ [/mm] ist auch [mm] \wurzel{\bruch{2}{k^4}} \to [/mm] 0 (für k gegen [mm] \infty). [/mm] Also ist [mm] \limes_{k\rightarrow\infty}|\vec{a_{k}}-\vektor{0 \\ 0}|=0 [/mm] Ist das so richtig?^^
Gruß David

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mi 02.03.2011
Autor: kamaleonti

Hi,
> Überprüfen Sie die folgende Folgen auf Konvergenz.
> Bestimmen Sie für alle konvergenten Folgen den Grenzwert
> und zeigen Sie ggf. die Konvergenz gegen diesen Grenzwert.
> Sind die Folgen nicht konvergent, so geben Sie eine
> Begründung an.
>  [mm]\vec{a_{k}}= (\bruch{1}{k^2},\bruch{1}{k^2})[/mm]
>  Hallo, also
> ich hätte das folgendermaßen gemacht: Wir vermuten, dass
> der Grenzwert 0 ist. Dann muss gelten
> [mm]|\vec{a_{k}}-\vektor{0 \\ 0}| \to[/mm] 0 (für k gegen [mm]\infty)[/mm]
> und [mm]|\vec{a_{k}}-\vektor{0 \\ 0}|[/mm] ist [mm]|\vec{a_{k}}|= \wurzel{\bruch{1}{k^4}+\bruch{1}{k^4}}=\wurzel{\bruch{2}{k^4}}[/mm]
> Wir wissen, dass [mm]\bruch{2}{k^4} \to[/mm] 0 (für k gegen [mm]\infty)[/mm]
> und wegen der Stetigkeit der Wurzelfunktion auf [mm][0,\infty[[/mm]
> ist auch [mm]\wurzel{\bruch{2}{k^4}} \to[/mm] 0 (für k gegen
> [mm]\infty).[/mm] Also ist
> [mm]\limes_{k\rightarrow\infty}|\vec{a_{k}}-\vektor{0 \\ 0}|=0[/mm]
> Ist das so richtig?^^

Die Begründung "Wegen der Stetigkeit ..." ist hier unangebracht. Die e-Funktion ist auch stetig, aber [mm] e^{2/k^4}\to1, k\to\infty. [/mm]
Es geht darum zu zeigen, dass [mm] b_k=\sqrt{\frac{2}{k^4}} [/mm] eine Nullfolge ist. Dazu zum Beispiel [mm] 0<\sqrt{\frac{2}{k^4}}=\frac{\sqrt{2}}{k^2}<\frac{1}{k} [/mm] für [mm] k\geq2. [/mm]
Dass 1/k gegen 0 geht, ist bekannt.

>  Gruß David

Gruß

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mi 02.03.2011
Autor: David90

Achso verstehe, also die Bedingung für k [mm] \ge [/mm] 2 kann ich ja so aufschreiben und nach dem "Sandwichprinzip" muss ja [mm] \bruch{\wurzel{2}}{k^2} [/mm] Null sein oder?:)
Gruß David

Bezug
                        
Bezug
Konvergenz: kleine Korrektur
Status: (Antwort) fertig Status 
Datum: 17:49 Mi 02.03.2011
Autor: Loddar

Hallo David!


> und nach dem "Sandwichprinzip" muss ja [mm]\bruch{\wurzel{2}}{k^2}[/mm] Null sein oder?:)

Du meinst das Richtige. Aber der Grenzwert für [mm] $k\rightarrow\infty$ [/mm] ist Null, nicht der Term selber.


Gruß
Loddar


Bezug
                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mi 02.03.2011
Autor: David90

ja das mein ich^^ sorry:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]