www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Konvergenz
Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Di 02.12.2008
Autor: mary-ann

Hallo!
Ich habe hier eine Aufgabe über punktweise und gleichmäßige Konvergenz von Funktionenfolgen und komme leider nicht weiter.

Kann mir jemand nochmal genau und ausführlich den Unterschied zwischen punktweise und gleichmäßiger Konvergenz erklären?? Oder gibt es da überhaupt einen entscheidenden Unterschied? Denn ich werde aus den Definitionen nicht ganz schlau. :(

Und wie zeige ich dann, dass meine Fkt.folge z.b. gleichmäßig konvergiert, wenn ich nur mein [mm] f_{n}(x) [/mm] und nicht mein f(x) habe?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:44 Di 02.12.2008
Autor: steppenhahn

Hallo!

Benutze mal die Suche, suche nach "punktweise gleichmäßige Konvergenz" oder so... Ab der 3. Seite kommen schon viele zu dem Thema beantwortete Fragen und auch Anwendungsbeispiele!

Z.B. Hier

Gruß,

Stefan.

Bezug
        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Di 02.12.2008
Autor: djmatey


> Hallo!
>  Ich habe hier eine Aufgabe über punktweise und
> gleichmäßige Konvergenz von Funktionenfolgen und komme
> leider nicht weiter.
>  
> Kann mir jemand nochmal genau und ausführlich den
> Unterschied zwischen punktweise und gleichmäßiger
> Konvergenz erklären?? Oder gibt es da überhaupt einen
> entscheidenden Unterschied? Denn ich werde aus den
> Definitionen nicht ganz schlau. :(

Das Entscheidende dabei ist der Standort des "für alle x".
Bei der punktweisen Konvergenz (PK) heißt es ja
Für alle x konvergiert [mm] f_{n} [/mm] gegen f.
Bei der gleichmäßigen Konvergenz (GK) dagegen heißt es
[mm] f_{n} [/mm] konvergiert für alle x gegen f.

Bei der PK nimmst du dir also ein x aus dem Def.-Bereich und zeigst die Konvergenz mit dem Epsilon-Kriterium.
Bei der GK muss dieses Kriterium für alle x gleichzeitig aus dem Def.-Bereich erfüllt sein.
Anschaulich kann man sich die GK vorstellen, als ob man einen "Schlauch" um die Grenzfunktion f legt, in den irgendwann die [mm] f_{n} [/mm] eintreten (für alle x gleichzeitig, daher der Schlauch)

>  
> Und wie zeige ich dann, dass meine Fkt.folge z.b.
> gleichmäßig konvergiert, wenn ich nur mein [mm]f_{n}(x)[/mm] und
> nicht mein f(x) habe?
>  

Das hängt von der Aufgabenstellung ab. Oft sucht man sich eine Funktion, von der man vermutet, dass die [mm] f_{n} [/mm] dagegen konvergieren und versucht dann z.B. mittels der Definition den Beweis zu erbringen.
Um so eine Grenzfunktion f zu finden, schau dir an, wie sich die [mm] f_{n} [/mm] für große n verhalten!

Schöne Grüße,
djmatey

>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]