www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konvergenz
Konvergenz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:48 Mi 15.10.2008
Autor: TTaylor

Aufgabe
Beweise, dass durch
[mm]f(z)= \sum_{n=1}^{\infty}\bruch{cos n}{n^z}[/mm]

in der Halbebene{z Element von C: Re z>1} eine holomorphe Funktion f definiert ist.

Guten Morgen erstmal!

Ich verstehe, dass ich [mm]f(z)= \sum_{n=1}^{\infty}cos (n) e^{-z log n} [/mm]schreiben kann.

Da n bei log n eine natürliche Zahl ist, habe ich keine Probleme mit log.
Als nächstes betrachte ich die Partialsummen:
[mm]f_m(z)= \sum_{n=1}^{\infty}cos(n) e^{-z log n}[/mm]

Was muss ich jetzt zeigen oder wie muss ich weiter vorgehen und warum?
Aufgaben von diesem Typ sind mir völlig unklar.
Hoffe es kann mir jemand weiterhelfen.

Grüße TTaylor

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Mi 15.10.2008
Autor: fred97

Sei z [mm] \in \IC [/mm] , Re(z)>1, z = x+iy (x,y [mm] \in \IR) [/mm] ,also x>1.

Rechne bitte nach, dass   [mm] |\bruch{cos(n)}{n^z}| \le \bruch{1}{n^x}. [/mm]

Da x>1, konvergiert die Reihe [mm] \summe_{n=1}^{\infty}\bruch{1}{n^x}. [/mm]

Also ist Deine vorgelegte Reihe für Re(z)>1 punktweise konvergent.

Zeige jetzt, dass sie im Gebiet G : = {z [mm] \in \IC: [/mm] Re(z) >1} auch noch lokal gleichmäßig konvergiert,

Nach dem Konvergenzsatz von Weierstraß stellt die Reihe dann auf G eine holomorphe Funktion dar.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]