www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Di 06.05.2008
Autor: MathStudent1

Aufgabe
Es seinen [mm] (a_{n}) [/mm] , [mm] (b_{n}) [/mm] , [mm] (c_{n}) [/mm] reelle Zahlenfolgen mit den folgenden Eigenschaften:

(a) [mm] \limes_{n\rightarrow\infty} a_{n} =\limes_{n\rightarrow\infty} b_{n} [/mm] = x
(b) [mm] a_{n} \le c_{n} \le b_{n} [/mm] für alle natürlichen n

Zeigen Sie, dass auch [mm] \limes_{n\rightarrow\infty} c_{n} [/mm] = x gilt

Hallo zusammen, weiß leider nach stunden rumüberlegen überhaupt nicht, wie ich das zeigen soll. dass es gilt, ist ja eigentlich offensichtlich, aber das mathematisch beweisen?!?!

ich hoffe ihr könnt mir weiterhelfen.
danke schonmal im voraus.
gruß michael

ich habe diese frage in keinem anderen forum gestellt

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 06.05.2008
Autor: schachuzipus

Hallo Michael,

bei dieser Aufgabe kannst du wunderbar die [mm] $\varepsilon$-Definition [/mm] des GW einer Folge benutzen:

Mit [mm] $\lim\limits_{n\to\infty}a_n=x$ [/mm] gibt's zu beliebigem [mm] $\varepsilon>0$ [/mm] ein [mm] $N_1\in\IN$, [/mm] so dass für alle [mm] $n>N_1$ [/mm] gilt: [mm] $|a_n-x|<\varepsilon$ [/mm]

Mit [mm] $\lim\limits_{n\to\infty}b_n=x$ [/mm] gibt's analog zu beliebigem [mm] $\varepsilon>0$ [/mm] ein [mm] $N_2\in\IN$, [/mm] so dass für alle [mm] $n>N_1$ [/mm] gilt: [mm] $|a_n-x|<\varepsilon$ [/mm]

Also ist für alle [mm] $n>\max\{N_1,N_2\}$ [/mm] .....

Löse mal die Beträge auf.

Was bedeutet [mm] $|a_n-x|<\varepsilon$ [/mm] ?

Doch [mm] $a_n$ [/mm] liegt näher an $x$ als [mm] $\varepsilon$, [/mm] dh. also [mm] $x-\varepsilon [/mm] \ < \ [mm] a_n [/mm] \ < \ [mm] x-\varepsilon$ [/mm]

Nun quetsche mal den Rest dazwischen und bastel es zuende ;-)


LG

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]