www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenz
Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:26 Mo 29.11.2004
Autor: barunka

Hallo, kann mir bitte jemand helfen mit folgender Aufgabe?Ich soll die folgende Reihe auf Konvergenz untersuchen:  [mm] \summe_{n=0}^{ \infty}\bruch{1+2(-1)^{n}}{2^{n-1}}. [/mm]
Ich habe versucht es über geometrische Reihe zu lösen,aber ehrlich gesagt verstehe ich diese Sache mit Konvergenz nicht ganz genau.Kann mir vielleich jemand ein gutes Buch empfehlen über die Konvergenz (wo gut erklärt sind z.B. Majoranten Kriterium, Quotientenkriterium, Wurzelkriterium, usw.)
Danke.

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Mo 29.11.2004
Autor: Marcel

Hallo Barunka,

> Hallo, kann mir bitte jemand helfen mit folgender
> Aufgabe?Ich soll die folgende Reihe auf Konvergenz
> untersuchen:  [mm]\summe_{n=0}^{ \infty}\bruch{1+2(-1)^{n}}{2^{n-1}}. [/mm]
>  
> Ich habe versucht es über geometrische Reihe zu lösen,aber
> ehrlich gesagt verstehe ich diese Sache mit Konvergenz
> nicht ganz genau.

Naja, setzen wir hier:
[mm]a_v:=\begin{cases} \frac{-1}{2^{v-1}}, & \mbox{für } v \mbox{ ungerade} \\ \frac{3}{2^{v-1}}, & \mbox{für } v \mbox{ gerade} \end{cases}[/mm]

so gilt:
[mm]\summe_{n=0}^{ \infty}\bruch{1+2(-1)^{n}}{2^{n-1}}=\summe_{v=0}^\infty a_v [/mm]

Weiter gilt:
[mm]|a_v| \le \frac{3}{2^{v-1}}[/mm] [mm] $\forall [/mm] v [mm] \in \IN \cup \{0\}$. [/mm]

Wenn du nun nachweisen kannst, dass [m]\summe_{v=0}^\infty \frac{3}{2^{v-1}}[/m] konvergiert, so folgt die Behauptung wegen dem Majorantenkriterium (Satz 6.15) und wegen Satz 6.14 in diesem []Skript.

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]