www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Aufgabe 3
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:22 Do 07.12.2006
Autor: doppelxchromosom

Aufgabe
Zeige das:
[mm] a_{k+1}=2a_{k}b_{k}/a_{k}+b_{k} [/mm]
monoton fallend ist, sowie beschränkt, weiter, dass
[mm] b_{k+1}=\wurzel{2a_{k}}b_{k}/\wurzel{a_{k}+b_{k}} [/mm]
monoton steigend ist, sowie beschränkt.

hallo leute!
wie gehe ich denn nun am besten an die geschichte ran?
ich habe versucht zu zeigen, dass [mm] a_{k+1}\ge a_{k+2} [/mm] für die monotonie, bekomme da aber nur ellenlange therme raus...irgendwas kann da also nicht stimmen.
bitte helft mir!!!!!
Wie zeige ich beschränktheit?

        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Do 07.12.2006
Autor: Brumm

Um zu zeigen, dass [mm] $a_{k}$ [/mm] monoton fallen ist, zeige dass [mm] $a_{k} \ge a_{k+1}$. [/mm] Also :
    [mm] $a_{k} \ge a_{k+1} [/mm] $
[mm] \gdw $a_{k} \ge \bruch{2 a_k b_k}{a_k + b_k}$ [/mm]
...

Brumm

Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Do 07.12.2006
Autor: doppelxchromosom

ich weiß, habe ich ja auch schon versucht (siehe frage), aber ich bekomme da ziemlich lange ungleichungen raus, schaffe es irgendwie nicht die zu verkürzen, und so erkenne ich dann nichts daraus.

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Do 07.12.2006
Autor: Brumm

Wenn du [mm] $a_k$ [/mm] dort stehen lässt, dann bekommst du keine ellenlangen Terme heraus ;)
Denn mit [mm] $a_k \ge \bruch{2 a_k b_k}{a_k + b_k}$ [/mm]
[mm] \gdw $a_k (a_k [/mm] + [mm] b_k) \ge [/mm] 2 [mm] a_k b_k$ [/mm]
[mm] \gdw $(a_k)^2 [/mm] - [mm] a_k b_k \ge [/mm] 0$
[mm] \gdw $a_k (a_k [/mm] - [mm] b_k) \ge [/mm] 0$
Zumindestens wenn [mm] $a_k [/mm] + [mm] b_k [/mm] > 0$.
Daher denke ich auch dass weitere Bedingungen gegeben sein müssten.

Brumm

Bezug
                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Do 07.12.2006
Autor: doppelxchromosom

ha! nu habe ich meinen fehler gefunden....danke, klar, dann ist der weg wirklich kurz.
mehr ist zur aufgabe wirklich nicht gegeben, nur noch, dass k [mm] \in\IN, [/mm] wodurch das [mm] \ge0 [/mm] gegeben wäre.

Bezug
        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:38 Do 07.12.2006
Autor: angela.h.b.

Hallo,

könnte es sein, daß Du Informationen über [mm] (a_k) [/mm] und [mm] (b_k) [/mm] verschweigst? Z.B. Startwerte?

Gruß v. Angela

Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Do 07.12.2006
Autor: doppelxchromosom

nein, das ist die aufgabe, startwerte haben wir keine. sorry

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:56 Do 07.12.2006
Autor: angela.h.b.


> nein, das ist die aufgabe, startwerte haben wir keine.
> sorry

Tja, aber irgendwelche Informationen, Einschränkungen oder so muß es noch geben.

Denn so ganz allgemein gilt das nicht:

Starte ich mit [mm] a_0:=-1 [/mm] und [mm] b_0:=1, [/mm]
scheitert alles schon daran, daß [mm] a_1 [/mm] und [mm] b_1 [/mm] gar nicht definiert sind,
was weitere Untersuchungen überflüssig macht.

Gruß v. Angela

Bezug
                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:13 Do 07.12.2006
Autor: doppelxchromosom

ja, sorry, habe schon brumm geantwortet, also, es ist noch gegeben k [mm] \in \IN. [/mm]

Bezug
                                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 Do 07.12.2006
Autor: angela.h.b.


> ja, sorry, habe schon brumm geantwortet, also, es ist noch
> gegeben k [mm]\in \IN.[/mm]  

Nunja...
Das ist keine verwertbare Information...
Da es hier recht offensichtlich um Folgen geht, ist doch sonnenklar, daß k [mm] \in \IN [/mm] oder [mm] \in \IN_0. [/mm]
Das hat doch mit den Werten, die diese Folge annimmt, also mit den [mm] a_k, b_k [/mm] absolut nichts zu tun!

Du weißt doch, was eine Folge ist???

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]